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Traces of CM values of modular functions

By Jan Hendrik Bruinier at Kéln and Jens Funke® at Las Cruces

Abstract. Zagier proved that the traces of singular moduli, i.e., the sums of the
values of the classical j-invariant over quadratic irrationalities, are the Fourier coefficients
of a modular form of weight 3/2 with poles at the cusps. Using the theta correspondence,
we generalize this result to traces of CM values of (weakly holomorphic) modular functions
on modular curves of arbitrary genus. We also study the theta lift for the weight 0 Eisen-
stein series for SL,(Z) and realize a certain generating series of arithmetic intersection num-
bers as the derivative of Zagier’s Eisenstein series of weight 3/2. This recovers a result of
Kudla, Rapoport and Yang.

1. Introduction

In [26], Zagier considers the normalized Hauptmodul J(z) = j(z) — 744 for the group
[(1) = PSLy(Z), where j(z) = e~ 2% + 744 + 196884¢*™= + ... is the classical j-invariant
on the complex upper half plane H. Let D be a positive integer and write 2 for the set of
positive definite integral binary quadratic forms [a, b, c] of discriminant —D = b* — 4ac.
The group I'(1) acts on 2p. If Q = [a,b, ] € 2p we write I'(1),, for the stabilizer of Q in

—b+ivD . L

I'(1) and ap = %\/_ for the corresponding CM point in H. The values of j at such
points o are known as singular moduli. They play an important role in many branches of
number theory. The modular trace of J of index D is defined as

1
(1.1) t;(D) = Qegg;r(l)mf(%)-

By the theory of complex multiplication, t;(D) can also be viewed as a suitable Galois
trace. It is a rational integer.

Zagier shows that the generating series

*) Partially supported by NSF-grant DMS-0305448 and NSF-grant DMS-0211133 at the Fields Institute,
Toronto.
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(1.2) —q 24 S ty(D)g”
D=1

= —q¢ ' +2 2484 +492¢* — 41199 + 72564° + - - -

is a meromorphic modular form of weight 3/2 for the Hecke subgroup I'y(4) whose poles
are supported at the cusps. Here ¢ = e?™* with 7 = u + iv € H. He gives two proofs of this
result. The first uses certain recursion relations for the t;(D), the second uses Borcherds
products on SL,(Z) and an application of Serre duality. Both proofs rely on the fact that
(the compactification of) I'(1)\H has genus zero. In [13], [14], Kim extended Zagier’s re-
sults to other modular curves of genus zero using similar methods.

It is quite interesting to compare this result with an older theorem of Zagier [25]

. . 1 .
concerning the Hurwitz-Kronecker class numbers H(D) = > |F Rk which we
QEQD/F
consider here as the trace t; (D) of the constant modular function 1 of weight 0 Zagier con-
structs a certain Eisenstein series 7 (t, s) of weight 3/2 and shows that for the special value

at s = 1/2 (in our normalization)

(1.3) ff(r, %) = DiOtI(D)qD + Z ﬁ(4nN2 Vg~

16fo

is a non-holomorphic modular form of weight 3/2 for I'y(4). Here
t(0) = —1/12 =vol(I'(1)\H) and f(s) jz 3205t gy

It is striking that while the positive Fourier coefficients of (1.2) and (1.3) are both traces
of modular functions, the negative coefficients are very different in nature. Furthermore,
Zagier’s proofs for (1.2) and (1.3) are totally different.

In [10], the second named author extended (1.3) to realize the generating series of the
class numbers of CM points for general congruence subgroups I" as the holomorphic part
of a non-holomorphic modular form of weight 3/2. These modular forms take the same
form as in (1.3) and are obtained as a theta integral

dx dy

(1.4) I(t,1)= [ 1-0.(7,z,0)
T\

integrating the constant function 1 against a theta series associated to an even lattice L of
signature (1,2) and a certain Schwartz function ¢ coming from [18].

In the present paper, we use the method of [10] to generalize (1.2) to traces t; of arbi-
trary modular functions f of weight 0 whose poles are supported at the cusps on modular
curves of higher genus. Namely, we consider the theta integral /(z, /) replacing in (1.4) the
constant 1 by the more general modular function f. Here the starting point is that /(z, f)
does converge since the decay of the theta kernel turns out to be faster than the exponential
growth of f at the cusps, see Proposition 4.1. Furthermore, the Schwartz function ¢ under-
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lying the theta kernel is closely related to a Green function for the CM points constructed
by Kudla [16]. This approach also gives a unifying proof for (1.2) and (1.3). Furthermore,
we obtain geometric interpretations for the constant and the negative Fourier coefficients.
For instance, the constant coefficient can be interpreted as the “average value”

1 ¢ dx dy
2n FJ )

reg

of f on T'\H. Here [ indicates a certain kind of regularization of the divergent integral.
I\H

The negative coefficients involve data coming from infinite geodesics joining two cusps of

M\H.

To illustrate our result, we now describe a special case, see section 6. For the general
statement which is phrased in terms of the orthogonal group of a rational quadratic space
of signature (1,2), see Theorem 4.5.

Let p be a prime (or p = 1). For a positive integer D, we consider the subset 2p , of
quadratic forms [a,b, ¢] € 2p such that a = 0 (mod p). Note that I'j(p), the extension of

. S : 0
the Hecke group I'g(p) < I'(1) with the Fricke involution W), = (

0 >, acts on 2p ,
with finitely many orbits. P

Let f be a modular function (of weight 0) for I'j(p) whose poles are supported at the

cusp and denote its Fourier expansion by f(z) = > a(n)e(nz). We define the modular
trace of f of index D by n>—o
(13) G(D) = % e f (o),

0e 25, /T3 (p IT( ol

where I'g(p),, is the stabilizer of Q in I'j(p). Finally, we put 01(0) = —1/24 and g1 (n) = >_ ¢
forneZ;o and o1(x) =0 for x ¢ Z>y. tn

Theorem 1.1.  Let f be a modular function for I'j(p) and denote its Fourier expansion
as above. Assume that the constant coefficient a(0) vanishes. Then

G(z,.f) = L G(D)g” + X (o1(n) + por(n/p))a(—n) — ¥ 3= ma(—mn)g™"
D>0 n=0 m>0n>0
is a meromorphic modular form of weight 3/2, holomorphic outside the cusps, for the group
['o(4p) satisfying the Kohnen plus space condition (see (6.7)). If a(0) does not vanish, then in
addition non-holomorphic terms as in (1.3) occur.

For p =1, and f = J, we recover (1.2).

One can also consider the theta lift I(z, /') for other types of automorphic forms of
weight 0. We consider 1(z, 6y(z,s)), where &y(z,s) is the (normalized) Eisenstein series for
SL,(Z) of weight 0. Via the Kronecker limit formula we then study (7, log||A(z)|). Here
IA(z)|| is the suitably normalized Petersson metric of the Delta function A(z).
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Theorem 1.2. We have

. 1
() 1 609) = (53709
Here (*(s) is the completed Riemann Zeta function. Moreover,
(i) —il(r log|A(2)|)) = F'( = !
12 ) ) 2 )

where F'(t,1/2) is the derivative of Zagier’s Eisenstein series at s = 1/2.

Taking residues at s = 1/2 in both sides of (i), we obtain another proof that the theta
integral (1.4) is equal to 2% (7, 1/2). This can be viewed as a special case of the Siegel-Weil
formula.

On the other hand, I(z,log||A||) can be interpreted in terms of arithmetic geometry.
In that way, one can recover the main result of [24], to which we refer for background
information and further details. We let .# be the Deligne-Rapoport compactification of
the moduli stack over Z of elliptic curves, so that .#(C) is the orbifold SL,(Z)\H U 0.
For D € Z and v > 0, Kudla, Rapoport and Yang [20], [24] construct cycles Z(D,v) in the
extended arithmetic Chow group of .# with real coefficients CHL(.#), see [3], [21], [6], [23].
For D > 0, the complex points of the underlying divisor of % (D, v) are the ['(1)-equivalence
classes of CM points of discriminant —D in H. Furthermore, we let & be the normalized
metrized Hodge bundle on .#, which defines an element

é1(@) = = (o0, ~logl|A(2)]?)

7 (
in @Iﬁ(ﬂ ). Finally, we let {, ) be the Gillet-Soul¢ intersection pairing. Since the divisor of
A over Z does not intersect Z(D,v) at the finite places, the D-th Fourier coefficient of

—1—121(1, log||A(z)||) turns out to be equal to 4(Z(D,v), ).

Theorem 1.3 ([24]). We have
. p 1 /1
(16) Z<g(l),l)),6{)>q =7 (t5]
Dez 4 2

Note that the proof of Theorem 1.3 given in [24] relies on the explicit calculation and
comparison of the Fourier coefficients on both sides of (1.6), while our method does not
require that. Also note that we realize the ‘arithmetic’ theta series (Kudla) on the left-hand
side of (1.6) as an honest theta integral. Theorem 1.3 can be viewed as an instance of an
‘arithmetic’ Siegel-Weil formula envisioned and pursued by Kudla and his collaborators,
see e.g. [17], realizing the arithmetic theta series as the derivative of an Eisenstein series.

Finally, we show that for f a Maass cusp form of weight 0, the lift I(z, f) is equiva-
lent to a theta lift first introduced by Maass [22] and later reconsidered by Duke [7] and
Katok and Sarnak [12].

We thank UIf Kiihn for suggesting to consider /(z,log||Al|). We also thank Gautam
Chinta, Jiirg Kramer, Steve Kudla and Steve Rallis for helpful discussions on this project.
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2. Preliminaries

Let V' be a rational vector space of dimension 3 with a non-degenerate symmetric
. . . 1 . .
bilinear form (,) of signature (1,2). We write ¢(x) = E(x, x) for the associated quadratic

form and let d be the discriminant of V, chosen to be a square-free positive integer. We fix
an orientation for " once and for all. We let G = Spin(}') ~ SL, viewed as an algebraic
group over @ and write G ~ PSL, for the image in O(V). We let D = G(R)/K be the as-
sociated symmetric space, where K ~ SO(2) is a maximal compact subgroup of G(R). We
have D ~ H, where H = {z € C;J(z) > 0} is the complex upper half plane. For our pur-
poses, it is most convenient to identify D with the space of lines in ¥ (R) on which the bi-
linear form () is positive definite:

D~ {zc V(R);dimz=1and (,)|, > 0}.

Let L = V(Q) be an even lattice of full rank and write L* for the dual lattice of L.
Let I' be a congruence subgroup of Spin(L) which takes L to itself and acts trivially on the
discriminant group L*/L. We write M = I'\D for the attached locally symmetric space.
Throughout we will assume that M is a modular curve, i.e., non-compact. Note that this
happens if and only if V" is isotropic over Q. We can then view V(Q) as the trace zero part
By(Q) of the indefinite quaternion algebra B(Q) = M>(Q). So

(2.1) V(@):{Xz(xl 2 )eMg(Q)}

X3 —X]

with ¢(X) = ddet(X) and (X, Y) = —d tr(XY). In this setting the action of G ~ SL, on By
is the conjugation:

g.X := ng_1
for X € By and g € G. Moreover, G(Q) ~ SL,(Q).

Notation. From now on, we will write z = x + iy for an element in the orthogonal
symmetric space D ~ H. The upper case letter X we reserve for vectors in V'(R), thought of
as elements in By(R). Its coefficients we denote by x;. Later on, we will write 7 = u + iv € H
for a modular form variable in H; i.e., we consider 7 as a variable for the (symplectic) sym-
metric space associated to SL, ~ Sp(1).

We make the previous discussion explicit by giving the following identification of D

-1 0
and note that K = SO(2) is its stabilizer in G(R). For z € H, we define g. € G(R)/K by the
condition g.i = z; the action is the usual linear fractional transformation on H. We obtain
the isomorphism H — D,

0 1
(2.2) Z > ¢,zo = span <g2.<_1 0))

0 1
with the upper half plane. We pick as base point of D the line z; spanned by ( ),
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So for z = x + iy € H, the associated positive line is generated by

1 0 1\ 1 —(z+2)/2 zz
(2.3) X(z).ﬁgb<_1 o)@V( . (z+z)/z>'

X1 X2

In particular, ¢(X(z)) = 1 and g.X(z) = X(gz) for g € G(R). For X = (x .
3 =X

we have

>e V(R)

(2.4) (X,X(2)) = —— (w322 = x1(z + 2) — x2)

_dax—x)’+q(X) .
- \/.)C3y \/C_l 3),

if x3 0. We let (,), be he minimal majorant of (,) associated to z € D. One easily sees
that (X, X), = (X, X(2))” = (X, X).

The set Iso( V) of all isotropic lines in (@) can be identified with P'(Q) = Q U oo,
the set of cusps of G(Q), by means of the map

_ 2
(2.5) ¢ :PHQ) —=TIso(V), Y((x:p))= span< Zg ocﬂ) e Iso(V).
- o,

One easily checks that iy is a bijection, commuting with the G(Q)-actions, that is,
Y(g(e: B)) =gp((e: B)). So the cusps of M, ie., the I-classes of P'(Q), can be iden-
tified with the I'-classes of Iso(V’). The cusp co € P!(Q) is mapped to the isotropic line

0 1
/o € Iso(V') spanned by Xp = (0 0). For 7/ eIso(V), we pick o, € SL,(Z) such that
oty = ¢. We orient all lines 7 € Iso(V) by requiring that g, X)) is a positively oriented basis
vector of /. We let I'; be the stabilizer of the line /. Then (if —1 € I)

1 koay
Jf_ll“gcr/:{i<0 ;x/>;keZ},

where o, € Q- is the width of the cusp /. Since g, € SL,(Z), we see that o, does not depend
. . 0 6\ .
on the choice of g, € SL,(Z). For each /, there is a f§, € Q- such that <0 ﬂ()’) is a

primitive element of 4y N g, ' L. Finally, we write ¢, = a,/f,. Note (see [10], Definition 3.2)
that &, would be even well defined if we picked o, € SL,(Q). The quantities o/, f,, and ¢,
only depend on the I'-class of /.

We compactify M to a compact Riemann surface M in the usual way by adding a
point for each cusp / € I'\Iso(V); we also denote this point by /. For each / € Iso(}V), there
is a neighborhood U, of # such that z = yz’ for some y € I and z, z’ € U, implies y € I',. We
write Q; = e(a,'z/a,) with z € U, for the local variable (and for the chart) around / € M.
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1 . .
For T >0, we let Dy;r = {w eC;lw| < ﬁ}’ and note that for T sufficiently big, the
T

inverse images Q; D, /7 are disjoint in M. We truncate M by setting

(2.6) Mr=M- 1[I O,'Dyr.
/\Iso(V)

In this setting, Heegner points in M are given as follows. For X € V' (Q) of positive
length, i.e., ¢(X) > 0, we put

(2.7) Dy = span(X) € D.

The stabilizer Gy of X in G(R) is isomorphic to SO(2) and for X € L¥, Ty = Gy n T is

finite. We then denote by Z(X) the image of Dy in M, counted with multiplicity —. We
set Dy = 0 if g(X) < 0. ITx|

Forme Q-gand he L¥ T actson Ly, ,, = {X € L + h;g(X) = m} with finitely many
orbits. We define the Heegner divisor of discriminant m on M by

(2.8) Zhym)= >, Z(X).
XeDl\Lj,
On the other hand, a vector X € V' (Q) of negative length defines a geodesic ¢y in D
via

cx ={zeD;z L X}.

We denote the quotient T'y\cy in M by ¢(X). The stabilizer Ty is either trivial (if the
orthogonal complement X+ < V is isotropic over Q) or infinite cyclic (if X~ is non-split
over Q). If T'y is infinite, then ¢(X) is a closed geodesic in M, while ¢(X) is an infinite geo-
desic if Ty is trivial. Note that the case X+ = V(@) split is equivalent to ¢(X) € —d(Q*)?,
see for example [10], Lemma 3.6. In that case X is orthogonal to two isotropic lines
/x = span(Y) and /y = span(Y), with ¥ and ¥ positively oriented. We say /y is the line
associated to X if the triple (X, Y, Y) is a positively oriented basis for V', and we write
X ~/x.Note by =/ _x.

3. A Schwartz function of weight 3/2
3.1. Geometric aspects. In [18], Kudla and Millson explicitly construct a Schwartz

function ¢x,, = ¢ on V(R) valued in Q"!(D), the differential forms on D of Hodge type
(1,1). It is given by

(3.1) o(X,z) = <(X,X(z))2 B %) e XXz gy

dX/\dy_i'dZ/\df

where = 72 PRI

We have ¢(g.X,gz) = ¢(X, z) for g € G(R). We define

(32) (/)O(X,Z) = e”(X’X)(/)(X,Z) — ((X,X(Z))z . %>€27zR(X,z)w7
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where, following [16], we set

(X,X). — 2 (X, X) = 2 (X, X(2))* — (X, X).

(33)  R(X,z):= : 5

N —

The quantity R(X,z) is always non-negative. It equals 0 if and only if z = Dy, i.e., if X lies
in the line generated by X (z). Hence, for X # 0, this does not occur if g(X) < 0.

The geometric significance of this Schwartz function lies in the fact that for ¢(X) > 0,
the 2-form ¢°(X,z) is a Poincaré dual form for the Heegner point Dy, while ¢°(X,z) is
exact for ¢(X) < 0. Furthermore, Kudla [16] constructed a Green function &° associated
to p°. We recall the construction of £°. We consider the exponential integral Ei(w) for

w t
w € C, defined by Ei(w) = | %dt, where the path of integration lies in the plane cut along
—o0

the positive real axis, see e.g. [1]. It is well known that Ei(w) has a logarithmic singularity at
w=0. For X € V(R), X # 0, we define

(3.4) &(X,z) = —Ei(-2nR(X,z2)).

Hence &°(X,z) is a smooth function on D\Dy. For ¢(X) > 0, the function £°(X,z) has
logarithmic growth at the point Dy, while it is smooth on D if ¢(X) < 0. In particular,
E%(X, ) is locally integrable.

_ 1 _
We let 0, 0 and d be the usual differentials on D. We set d¢ = 4—m,(6 —0), so that
1 -
dd‘ =

2
Theorem 3.1 ([Kudla [16], Proposition 11.1). Let X % 0. Away from the point Dy
(3.5) dd°Z(X,z) = ¢° (X, z).

The function £°(X,z) is a Green current of logarithmic type for Dy associated to ¢°(X,z)
(see [23]), i.e., as currents

(3.6) dd“[E°(X ,2)] +0p, = [p°(X,2)],
where dp, denotes the delta distribution concentrated at Dy.

Proposition 3.2. For ¢(X) > 0, the differential forms &°(X,z), 0¢°(X, z), 0¢°(X, z),
and ¢° (X, z) are of “square-exponential” decay in all directions of D, i.e., they are

0(e=™), asx— +oo,
0 "), asy— oo,
O(e="), asy—0,

for some constants C > 0, and uniformly in y in the first case, and uniformly in x in the
other two. In particular, the current equation (3.6) does not only hold for compactly support
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Sfunctions on D, but also for functions of “linear-exponential” growth in all directions, i.e.,
0(eC™), 0(e), and O(e€?), respectively.

X1 X2

Proof. Write X = <
X3 —X]

). Since ¢(X) > 0, we have x3 & 0. By (2.4) we see

—2nR(X,z) =2n(X,X) — n(d(x3x _\/_);)SWJF ¢(X) + \/Exg/) .

This implies the described decay of the above differential forms. []

) , ) 1w\ /o2 0
3.2. Automorphic aspects. For t =u +ive H, we put g, = 01 L)
and define 0 v

1) o) = 0 olgpX.s) = (o(X,X ) - )0
where (X, X),_ = u(X,X) +iv(X,X), = 7(X, X) + iv(X, X(z))’. Hence

(3.8) p(X,7,2) = NGO (oX )

Then, see [19], [10], for 2 € L¥/L, the theta kernel

(3.9) On(t,z,0) = 3 o(X,1,2) e Q 1 (D)"

Xeh+L

defines a non-holomorphic modular form of weight 3/2 with values in Q!! (M), for the con-
gruence subgroup I'(N) of SL,(Z), where N is the level of the lattice L (and for I'o(N) if
h = 0). More precisely, we let Mp,(R) be the two-fold cover of SL,(R) realized by the two

b
choices of holomorphic square roots of 7 — j(g,7) = ¢t + d, where g = (Z d) € SLy(R).

Then there is a certain representation p, of the inverse image I'" of SL,(Z) in Mp,(R),
acting on the group algebra C[L¥/L] (see [2], [4]). We denote the standard basis elements

0 -1
of C[L¥/L] by ¢,, where he L*/L. For the generators S = ((1 0 ),ﬁ), and
1 1
T = ((0 1), 1> of T/, the action of p, is given by
p(T)en = e((h,h)/2)e,
Vi
pL(S)e) = ——e= e
’ T T

We then define a vector valued theta series by

O(t,z,0) = > O(t,z,0)en.
heL¥/L

(—(h, h/)) Cpr.

We have, see [18], [9],
®<T7 Z, (ﬂ) € A3/27L ® 9171(M)7

where A3/, ; denotes the space of C*-automorphic forms of weight 3/2 with respect to the
representation p,, that is, for (y’, ¢) e ",
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0()',2.9) = ¢’ (D)pL (', $)O(z, 2, 9).
More generally, we denote the holomorphic modular forms of weight k for I'' with respect
to p, by My 1, and write M, , for those forms which are holomorphic on H but meromor-

phic at the cusp, see e.g. [2], [4].

To lighten the notation, we will frequently drop the argument ¢.

4. The theta integral

We now consider ©(z, z) as a vector valued top-degree differential form on M = I'\D.
We want to pair it with suitable O-forms f on M. We need the following result on the
growth of O(z,z) in D.

Proposition 4.1 ([10], Proposition 4.1).  For each h € L* and € H and at each cusp ¢,
we have

On(z,002) = O(efcyz) as y — oo,
uniformly in x, for some constant C > 0.
Proof. This follows from the proof of [10], Proposition 4.1. Note however the con-
fusing typesetting errors in this proof; several occurrences of exp(-) should be e(-). We

therefore give a very brief sketch of the argument given there.

It is easy to see that it is sufficient to assume L = Z* in (2.1) and that it suffices to
show that 6,(z,z) is rapidly decreasing as y — oo. For simplicity we assume d = 1. Note

h= (hl (2 ) with #; = 0 or i1 = 1/2. So we have to consider the growth of
—h

0
X1 X2
eh(T7Z = @ ( )7T7Z
) X1 E;{»h] X3 —X1

X2,X3EZ

as y — oo. Applying partial Poisson summation with respect to x,, we obtain

4.1)  Oh(t,2) = — 03—y/2 ZZ: ) (w4 x37)%e(—Tx?)e(—[w + x37)[x32Z — 2x1x])
X1 €L+n
w,x3€Z

2
X exp (—ny? (w+ xﬁ)z) dxdy.

=— % >oo(w+ xﬁ)ze(—f(xl - X3x)2)e(2(x1 — x3x/2)xw)
U7 €Z+/Zn
W, X3 €

2
X exXp <—7zy7 |w+ x3r|2> dxdy.

The assertion follows. []
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We denote by M(T') the space of (scalar valued) weakly holomorphic modular forms
of weight 0 with respect to I'. It consists of those modular functions for I" which are holo-
morphic on D ~ H and meromorphic at the cusps of I'. Hence any f € M(!)(F) has a Four-
ier expansion at the cusp / of the form

(4.2) florz) = 32 as(n)e(nz),
1
ne;Z
with a,(n) = 0 for n « 0. In particular,
florz) = 0(™)  (y — o0)

for some N > 0.

We define the theta lift of f by
(43) I f)= [f@O@E) = % (ff<z>0h<r,z>)eh.
M he L¥/L \M

We also write
(4.4) In(r, f) = AJ;f(Z)Oh(f, z)

for the individual components. Proposition 4.1 implies the convergence of (4.3). Then it is
clear that I(z, f) defines a (in general non-holomorphic) modular form on the upper half
plane of weight 3/2.

Definition 4.2 (Modular trace for positive index). For me Q- and he L¥*/L, we
then define the modular trace function of f by

(4.5) Y= ¥ f)= % — f(Dy).

zeZ(h,m) XeT\Ly,n 1—‘X|

Definition 4.3 (Modular trace for m = 0). For m = 0, we set

Ono "8 dxd
t(h0) = =32 [ f(2) =57,

M Y
. dxdy. .. . . .
For f non-constant, the integral | f(z) 32 is divergent, and is regularized by setting
M
reg dxdy . dx dy
(4.6) J f(@)—5~=lim [f(z)—3,
M Y T—0 pr. y

where M is the truncated surface defined by (2.6). The regularized integral is computed in
Remark 4.9 below.
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Definition 4.4 (Modular trace for negative index). If ne Q. is not of the form
n=—dm? with me Q. we put ty(h,n)=0. If n=—dm? with me Q. we define
ty(h, —dm?) as follows: Let X € Ly, _gm> such that X+ is split over @, and ¢(X) is an infinite
geodesic. We can choose the orientation of V' such that

1 m r
T X = 0 —m

for some r € Q. In this case the geodesic cy is explicitly given in D ~ H by
cx = o {z e H;R(z) = —r/2m}.

We call the quantity —r/2m the real part of the infinite geodesic ¢(X) and denote it by
Re(c(X )) Recall that for the cusp /x, we denote the corresponding local variable by
Oy, = e(oy'z/as,). We write Quy) = O ™ Re(c(X))/ory  We now define

SreX)y == ay (n)e2ﬂiRe(€(X))n -3 a/ﬂ‘,(n)eZm'Re(c(fX))n

n<0 n<0

We then put

Gl —dm) = X (fie(X)).
Xe F\Lh. —dm?2
Theorem 4.5. Let [ € M)(T) with Fourier expansion as in (4.2), and assume that the
constant coefficients of f at all cusps of M vanish. Then the Fourier expansion of Iy(z, f') is
given by

Lz, f) = Z;Otf(h,m)qm + S te(h,—dm®)g~ ",

m>0

2nit

with g = e”™*, and where t;(h,m) is the modular trace function defined above.

If the constant coefficients of f do not vanish, then I(t, f') is non-holomorphic, and in
the Fourier expansion the following terms occur in addition:

1 a{ (0) + a/7 (0) 2 —d 2
P as(0)es + ——— " B(4nvdm”) g~ """,
271@ le F\zls:o(V) m§>:O Xe F\Z:Lh_ a2 87'[\/@}’}’1

{AL+h+0

where B(s) = f 1325 dt.
1

Remark 4.6. (i) The theta lift I(z, /) was studied in [10] for the constant function
f =1e M)(T). There it was shown that I,(z, 1) is non-holomorphic and

117(T7 1) = Z t (hﬂm)qm + E(h) —+ Z ﬁ(4nvdm2>q7dmz.

1 3 1
m=0 27'5\/1747 m>0XeL, , > 4713\/@7”
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Here e(h) = > 6,(h)e, with 0,(h) = 1if £/ n L + h + () and zero otherwise. This gen-
/e\Iso(V)
eralizes Zagier’s non-holomorphic Eisenstein series of weight 3/2 [25].

(i) If M is compact, i.e., a Shimura curve, then M)(T') = My(T') = C, and I;(z,1)
was considered by Kudla-Millson, see e.g. [19]. Here one has

Ih(Ta 1) = Z t (ham)qm'
m=0
We will now show that the trace function t(h, —dm?) vanishes for large m > 0, so
that I(z, f) € Mé L For this, we sort the infinite geodesics according to the cusps from
where they originate. For m € Q~, we define L, 4,2, ={X € L, _42,,; X ~ /} and see

Lh, —dm? — H H y_th, —dm?, /-
/eT\Iso(V) yel,\I'
Furthermore
#F\Lh,fdmz = Z :H:r/\Lh,fdmz,/
/eT\Iso(V)

so that we conclude

2mey if Lh,fdmz,/ + 0a

(4.7) vo(h,—dm®) := #T\Ly, _ g2, s = {
0 else,

with &, = a,/f, as in section 2 (see [10], Lemma 3.7).
Proposition 4.7.  Let [ € My(T) with Fourier expansion as in (4.2). Then

tr(h,—dm*) = — S vi(h,—dm®) Y as(n)e*™™

/e \Iso(V) n e;—';’Z@

— S v(=h—dm®) Y as(n)e*m,

/eT\Iso(V) "eii_’:zd)

with r = Re(c(X)) forany X € Ly, _ g2, and v' = Re(c(X)) Jorany X € L_, _ 42 4. In par-
ticular,

te(h, —dm*) =0 form> 0.
Proof:  We have

(4.8) tr(h,—dm*) = — > S ay, (n)eXHRECXD)n

1
Xel\L, _,2n e;Z<o

_ E Z a (n)eZm' Re(c(—X))n'

Xe F\L/L —dm?2 N€ $Z<0

We denote the first term in (4.8) by G(h, —dm?). So the second term in (4.8) is equal to
G(—h, —dm?). We have
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Gh,—dm*) = S G(h,—dm*, /),
/eT\Iso(V)
where
Gh,—dm* () =— % S ay(n)eXmReCXn,

1
Xe 1—‘\Lh. —dmz, rn e;Z<0

We can assume that a set of representatives for I'/\L;, _4,> , is given by

1 2r+kp,
{Yk:a/m<0 r+_lﬁ//m);k:0,...,2msg—l}

for some r € Q. In particular, Re(c(Yy)) = —r — kzﬁ—/. Thus,
m

2e,m—1 )
G(h, —dmza/) == > X a/(n/a/)e*Z”’("+kﬂ//2’”)”/“/
k=0 neZ

_ —2nirn/ oy 2] —2nink /(2me;)
== 2 a/(njo)e > e
neZ<0 k=0

= 2me, S as(nfoy)e M
nel2mesZ <

The other term, G(—h, —dm?), is treated in the same way. []
Theorem 4.5 and Proposition 4.7 imply

Corollary 4.8.  Assume that all constant coefficients of f € M{(T') vanish. Then

I(r,f)e My ;.

Remark 4.9. One can compute t/(/,0) as follows. We consider the Eisenstein series
for I' of weight 2 at the cusp 7y, i.e., at co:

(4.9) Es(z,5) = ;WmMr%mwﬁﬁ

b
where j(g,z) = cz+d for g = (a ) Then, see e.g., [15], the series E»(z,s) converges
c

d
for s > 0 and has a meromorphic continuation to C. At s = 0, E»(z, s) is holomorphic, and
we put E»(z) = E»(z,0) which defines a (non-holomorphic) modular form of weight 2 for
I'. The Fourier expansion E, /(z) = j(o7,z) *Ea(0;z) at a cusp / is of the form

1 o .
(4.10) Ey/(2) = (b/(O) +¢(0) ;) + 3 by(nfoy)e? =l
n=1
Here b,(0) = d, 4 is the Kronecker delta and ¢(0) = — % is independent of 7.

. = dxd
Using Stokes’ theorem and the fact that 0(E,,/(z) dz) = ¢(0) xzy
reg Y
to [2], section 9 that the regularized divergent integral [ f(z)duis equal to
r\p

one sees similarly
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1
(4.11) “0) > o Y al(=mbs(n).

/eT\Iso(V) nE;—/Zgo

In particular, if I is a congruence subgroup of SL,(Z), we may make this more ex-
plicit, using the Fourier expansion

3 m .
&(z) = —— =24 gy (n)e*™m
@=-—-uTam)
1
of the (non-holomorphic) Eisenstein series &>(z) of weight 2 for SL,(Z). Here ¢,(0) = — 7

and g)(n) = >t for n € Z-y. Arguing as in [2], section 9 we find in this case
t|n

reg dxd
(4.12) [/05E =8t ¥ % ¥ a(-nan).
r\D Y teT\Iso(V) neZso

For f =1 we recover the well known relation > a, = [PSLy(Z) : T'].
/eT\Iso(V)

Proof of Theorem 4.5. We give the outline of the structure of the proof, which re-
duces the theorem to the computation of several orbital integrals. We will compute these
integrals in the next section.

We define

(4.13) Opm(t,z) = >, @(X,7,z) and 927,”(0,2): S o’ (VuX, 2).

XEL/LW XGLh,m

By (3.8) we then have

@18 hef)= ] S @0 = 5 (ff(zw,?,m(v,z))qm,

M meQ meQ \M

which is the Fourier expansion of (7, f). (Hence interchanging summation and integra-
tion is valid in the last step.)

For m # 0, I'\ Ly, is finite. Therefore, for these m, we obtain for the latter integral in
(4.14):

(4.15) Agﬂz)e,?,m(v,z):f > Y S (VX z)

MXel\Ly,,, yelx\I'

= X | X f@e"(VoX,yz),

XeT\Lyn M yeTy\T

provided the interchange of summation and integration is valid, i.e., the integral in (4.15)
converges for all X.

Then the statement about the positive Fourier coefficients of /(z, 1) follows from
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Proposition 4.10. Let X € L + h such that ¢(X) > 0. Then
Z\ f(2)"(VoX,yz) e L'(M),
yelx\I'

and

[ S f@(VoX,y2) = = F(Dy).

MyeTr\T Tx|

For ¢(X) < 0, the space X+ = V has signature (1, 1), and we have to distinguish two
cases, depending on whether X is isotropic over @ or not. If X is isotropic over @, then
Ty is trivial and ¢(X) € —d(Q*)?. If not, Ty is infinite cyclic and ¢(X) ¢ —d(Q*)* (see [10],
Lemma 4.2).

For m ¢ —d(Q*)?, (4.15) reduces the statement about the m-th coefficient to

Proposition 4.11. Let X € L, ,, with m < 0 such that m ¢ —d(@x)z. Hence Ty is in-
finite cyclic. Then

> f(2)0"(VoX,yz) e L'(M)

})EF}(\F

and

[ X fEe"(VX,pz) =0.
MyeTy\T
For the split case, we have

Proposition 4.12.  Let X € L;, > (with m € Q) so that Ty = 1. Then

IS f(2)e°(VuX,yz) e L'(M)

Myell
and
X 1
IS f@0°(VoX,yz) = (as(0) + as_, (0)) ——=—B(4nvdm?)
Myell 8nvvdm
-~ Y ay, (n)e2ﬂiRe(c(X))n - Y X(n)eZHiRe((r(—X))n.
n<0 ' n<0 -

It remains to compute the constant coefficient of 7,(z, 1), which is given by

(4.16) AgXZLIMf(Z)wO(\/EX, 2).
q(X)=0

We would like to split this integral into two pieces; one for X =0 (if 2 =0) and the
. 1

other for X # 0. However, for X =0, we simply have ¢(7,X) = 5@ and therefore
T

| f(2)¢°(0,z) does not converge due to the exponential growth of /. In order to split the

M
integral (4.16) we therefore have to regularize it, as explained in (4.6). We obtain
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@17) 02 =~ T () w+j S S0 VX, 2).
M T M M XeLyo
X=+0

The first term is t;(h,0).
Proposition 4.13.  For the second regularized integral in (4.17), we have

reg

f(2)e" (VX ,z) = a/08/~
A‘gXezLjh 27'5\/ /eT\Iso(V ( )
X=+0 /mL+h+Q)

This finishes the (outline of the) proof of Theorem 4.5. [

5. Orbital integrals
In this part of the paper, we will prove Propositions 4.10, 4.11, 4.12, and 4.13.

We begin with a lemma on Fourier transforms, which we will need later. For a

function ¢(7) on the real line, let g(w) = f g(t)e*™™ dt be its Fourier transform.

Lemma 5.1. Fora,b > 0, let

—a*t?

. e

Then

a a

1 1 2 ) 2b 7u4172+7z2u-2
h(W) = __euzb (nabe2ﬂbw erfc <m) _ \/;-Ee Uz_> )

Here erfc(x) is the standard complementary error function given by

erfc(x) = \/_ e du.
—a2?

Proof of Lemma 5.1. By [9], p. 74, (26), the Fourier transform of f(¢) = t;+7b2 is

f(w) = 56“2”2 (e72™" erfc(ab — mw/a) — e*™" erfc(ab + nw/a)),

(note the different normalization there). By differentiating under the integral, we see that
Za2?

the Fourier transform of #f(¢) = ¢? te is given by the derivative —2L f '(w). Since
T

2 +b2
h(t) = tf (¢t) — ibf (¢), we obtain for the Fourier transform of /:
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~

) = — 5 f/(0) — ibf ().

But

A b
——f'(w) = — %e”zbz (e72™" erfec(ab — nw/a) + ¥ erfc(ab + nw/a))

2V o 272, .22/ ,2
+ \/“eabef(athnn /a).
a

Lemma 5.1 follows. []

Proof of Proposition 4.10. Let X e L* such that g(X) > 0. Then [y is a finite cyclic
group. Using the I'-invariance of f, we see

(5.1) [ fi2) X o"WVoX,pz) = | f(2)e°(VoX,z)

D 7elx\l Ix\D

- ﬁ [ SR (VEX.2),

By Proposition 3.2, the decay of ¢°(y/vX, z) offsets the growth of f. Therefore the last in-
tegral in (5.1) exists, which implies the existence of the first integral and the validity of the
unfolding. By Theorem 3.1, Proposition 3.2, and D 5y = Dy we see

[ F@)0" (VX ,2) = f(Dy) + [ E(VoX,2)ddf (2).
D D
But ddf = 0, since f is holomorphic. This proves Proposition 4.10. []

Proof of Proposition 4.11. Let q(X) =m <0 for X e V, so X+ has signature (1,1).
Assume that X+ is non-split, so that Iy is infinite cyclic. By conjugation, we can always

1 0 — 0
assume that X = «/—m/d(o 1>. Then I'y = <<8 _1>> with some € > 1. Using
_ € 5
(2.4) we find for our particular choice of X that (X, X (z))2 = —4mx—2. Therefore, in view
Y

of the explicit formula for ¢°(X,z), we obtain by (formally) unfolding the orbital in-
tegral:

J f2) 3 o"(WVoX,pz2) = [ f(2)e"(VoX,2)

r\D yely\l Ty\D

21 v dx d
= [ f(2) <—4mvx—2——> e xzy'
D y? 2z y

A fundamental domain ¥ of I'y\D is the domain bounded by the semi arcs |z| = 1 and
|z| = €2 > 1 in the upper half plane:

(5.2) 9 ={zeD;1 <|z| <€}
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But in this region, the rapid decay of ¢°(X, z) offsets the growth of f(z) as z approaches the
boundary of %. So all considered integrals actually exist and unfolding is allowed. Finally,
by Theorem 3.1 we have

[ f(2)0°(VoX,2) = [ WX, z)dd*f(z) =0

Iy\D Ty\D
since f is holomorphic. This proves Proposition 4.11. []

Proof of Proposition 4.12. Here we consider the case that ¢(X) = —dm? (m > 0).
Note that the proof of Proposition 4.11 does not carry over, since for X € L, _g,,» and I'y
trivial, the integral [ f(z)¢°(v/vX,z) does not exist. (Even for f = 1, see [10].) Since [ is

D
holomorphic, by Stokes’ theorem we have

| f(2) X0’ (VoX,pz) = I ()00 3 & (VuX, pz)

M yell Im yell
o Ld(re0 S ewex )
Uy yel
2 Jim ff(Z)ZaéO(fo y2).
i T My yel
Note here
_OR(X,z)
0 _ —27R(X,z)
(5.3) 0 (X, 2) R(X 3 e .
For an isotropic line 7, we write dMr , for the boundary component of M7 at the cusp
corresponding to 7. So OMy = I oMr,.
/eT\Iso(V)

For any X € L_g,,, there is an involution Jy € G(Q) taking X to —X and inter-
changing the lines /y and /x. (It could be made unique be requiring in addition that

- 1 2
Jx({x nL) =¢y nL.) For example, for X—m(o }1>, we can take Jy = T_.JT,

where J = (_01 (1)) and T, = <(1) ;) So for an arbitrary X € L_ ,2, we can take
Jx =0, Jyo;! where X' =o' X.
Lemma 5.2.
(54)  Jim [ f()3 & (VeX,pz) = lim [ f(2) 3 0" (VX y2)
© oMy vel © oMz, yelyy
+Tli31 J" fz)}ezr/ o (VX yz).

Proof. Choosing the orientation of V" appropriately, we have

X —olx=m( L ¥
x 0 —1
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for some r € Q. Then

(5.5) lim [ f(5) Y0 (ViX. )
—® OMT }’EF
) oy +iT 0
=—lim 57 [ f(oz) 30 (VX yo;z)
T'=a0 /eT\Iso(V) z=iT yell
oy +iT

=—1lim | flos2) Z@fo(\/—X o, yayz).

Uit /eT\Iso(V) z=iT

We have

!/ X r2 1
56 (X)) = ddnt :4dm2<s<z>%(f<z+r>)_l>'

b
Ifg= (i d> € G(R), we see by means of (3.3) and (5.6) that

1 _2dm2|cz+d|2|(a+rc)z+b+rd|2
S(92)S(xgz) »?

with Jy, = T_,JT, as above.

R(X',gz) = 2dm?

Let T be an arithmetic subgroup of G(Q). Then there is an ¢ >0 such that
R(X',gz) > ¢ for all g € I, uniformly on y > 1. Moreover, using (5.3), one easily checks
that there is a § > 0 such that

P 50( VoX',gz) < 67(3(\E2+d\2+|(a+rc)z+b+rd\2) e iz
a b S .
forall g = 7)€ I’ with ¢ # 0 and a + rc # 0, uniformly for y > 1.
c

This implies that

ay+iT

—1lim ) | floz) X aE(VoX' e, yosz) =0,
T=% seM\Iso(V) z=iT yel
c(a/’Xl"/o‘/)#O,

C(Jx/a;xlya/) +0

where ¢(g) denotes the lower left entry of g € SLZ([RE) Consequently, in (5.5) we only have
to con51der the terms with c(a, yay) =0 or c(JX/al ya;) = 0. But c(a/ yays) = 0 is equiva-
lent to oy, Ya,ty = ty. Hence ¢ = a4 is T- equlvalent to x = a4 and therefore we may
assume / = /y. Now c(a/ yas, ) = 0 implies y € I';,. We obtain the first summand on the
right-hand side of (5.4).

On the other hand, c(JX/a/ yay) = 0 means yo,ty = oy, Jx ity = Jxly = /y. Hence /
is T-equivalent to Zy. So we assume / = /y and hence y € I';,. This gives rise to the second
summand on the right-hand side of (5.4). [
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Lemma 5.3. For X € L;, _g,2, we have

(5.7) — lim f(2) 3 (VX yz)
27 T—w 8M£_/X yEF/X
1 .
= a, (0)B(4rvdm?®) — ay, (n)e2™Re(cX)n,
87‘[\/1767}1/1 /X( )ﬂ( ) ne§z<0 /x( )
’7/X
. , 1 I 2r

Proof.  As before, we can write X' :=0,'X =m 0 1 for some r € Q. Hence
Re(c(X)) = —r. For simplicity, we write o = a,, and g(z) = f(o,,z) with Fourier expan-
sion g(z) = Y a(n)e(nz). We first see

ne}Z

(58)  gdim [ 1) ¥ (/X )

Tl T—x aMT,/X yer/x
1. T 0 1 2(r+an)
== zadm oz (v 7))

1 2
For Y = m(O (r +1om)>, we note

2

R(Y,z) = 2dm (X +r 4 on)? + 2dm?,

y2

2 .
OR(Y,z) —26;”; (x+r+ocn)<l+§(x—|—r+om)>.

Therefore by (5.3):

—i 5 e747zvdm2 (x+r+-on) 2/y2
EO(VY ,2) = —e MMV (x 4 p 4 om) (x + 1 + an — iy) 3 dz.
y (x+r+on)”+ y?

Wesett=x+r+an,a=2

,and b = y, and obtain

vrvdm
y

. —ar .
(VoY z) = — ée‘”zbzt(t —ib) ;Libzdz S ée‘”zbzh(t) dz

with A(7) as in Lemma 5.1. Hence, the Fourier transform of /;(¢) = h(x + r + af) is given
by

h (W) _ éefZHi(err)w/ocil(W/a).

By Poisson summation, Lemma 5.1 therefore gives
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2(r+ on) i —omi :
P 0 om < ) Lz )= e 2mi(x+r)w
”gz é <\/— -1 ) weZlZ 20(\/@1’1/1

x (2nv/vdme™ erfe(2v/mvdm + /awy |2V vdm)

_ e—47wdmz—mvzyz/4vdmz) dz

Inserting the Fourier expansion for g and carrying out the integration we get for the quan-
tity in (5.8):

lim 72m'rweonwT
47z\/ me—m};Z a(w)e

X (275\/ﬂme2”’T erfc(2Vrvdm + /awT /2Vvdm) — e_4””d’”2_"“’2T2/4”‘]’"2)

— lim —2mirw
471\/ dm T—© W§Z w)e

x (2nv/vdmerfe(2v/avdm + /awT /2V vdm) — e‘”<2m’"+”/2mm>z).

The square exponential decay of e 72Vedm+wT/2Vudm)® gor \ 4+ implies that the contri-
bution corresponding to these terms vanishes in the limit. Therefore the above quantity is
equal to

1

(5.9)  anodm

a(0) (2n\/ﬁm erfc(2\/7—z?c?m) — e—4nvdm2)

3 Jim a(w)e " erfc(2v/mvdm + /awT /2v/ vdm).
T welz\(oy

Using the identity B(7) = 2(e~' — v/mterfc(v/7)) we find that the first term in (5.9) is equal
to

ma(om(@wdmz).

For the second term in (5.9), we first note that erfc(r) = O(e™’) as ¢ — 400 and
lim erfcs = 2. Hence the second term in (5.9) is equal to

t——0o0
_ Z a(w)672m‘rw.
weild)

This gives Lemma 5.3. [
This finishes the proof of Proposition 4.12. []
Proof of Proposition 4.13.  'We now consider Proposition 4.13; the sum over the non-

zero isotropic vectors. We write X, for the primitive positive oriented vector in L n /. We
can write / N (L + h) = ZX; + h, for some h, € L + h if 6,(h) & 0. We then have
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reg reg
1) 2 o' WeX, )= [ f2) 2 > X (VX2
r\D XeLy r\p teT\Iso(V) Xel/n(L+h) yeI,\T'

X+0 X=+0

reg

0

= > [/ X X" (VonXs+h),yz).
/e\Iso(V) T\D yel\['n=—00
Or(h)=*£0

Here ' indicates that we omit 7 = 0 in the sum in the case of the trivial coset. As before,
we obtain by Stokes’ theorem

reg

(5.10) | f(2) 3 ¢"(VoX,z)

r\np XeLyo
X=+0

1 ©
=5 > hm | f(2) S o0& (Vo(nX, + hy), yz).
Tl yeT\Iso(V) T= % oty yeD\F n=—0o0
8, (h) =0

Note (X, X(z)) = Vdr/y for X = <8 0> By (5.3) we find for g = <z Z) e G(R) that

i

- e—m;drz/‘&(gz)2 dz.
(e +d)S(g7)

0 (VX gz) = —

Similarly to the proof of Proposition 4.12, we then see that on the right-hand side of (5.10)
in the limit the terms for y = 1 vanish, while for y = 1, we have a contribution at the bound-
ary component corresponding to the cusp /. Thus

s 1 iT+oy |
[f0) 2 ' (WVoX,)=— S lim [ f(z) S —e bkl gy,
r\»D XeLyo 2n ;. MIso(V) =% T n=—0o

X+0 8/ (h)+0

0 k
Here o, (X, + hy) :<0 /)'/4(; /

term for n = 0 and k, = 0 vanishes. Then, by carrying out the integral and Poisson summa-
tion we obtain

) for some number k,. Note that in the limit a possible

reg

I
[0 S o(ox, )= Y Za0) lim Y e mdohk/T
D XeLno /eT\Iso(V) 2n T—o0y—"u T

X+0 ,(h)+0

erar(0) —nw2T2)(vdf?)
. lim 3 e(—wh /)= T/
 Jeriho(v) 21V vd T— \ie7
8/ (h) +0

&

= X (0).
/e\Iso(V 271'\/_

or(h)=*0

This concludes the proof of Proposition 4.13. [
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6. Example

We explain how to obtain the example from the introduction. Let p be a prime. We
consider the quadratic space V' (Q) as in (2.1) with the quadratic form ¢(X) = det(X). We

let L be the lattice
b 2¢
L= : Z 5.
{<2ap —b>’a’b’ce }

Then L has level 4p and is stabilized by I'y(p). The modular curve M = I'y(p)\D is com-
pactified by adding the two cusps oo, 0 of I'g(p), which are represented by the isotropic

lines
0 1 0 0
(6.1) /Ozspan<0 O)’ /1:span(_1 0).

0
We may take g, = 1 and g/, = (

L 0 ) One checks that ay, = 1, B, =2, &4, = 1/2, and
oy = D, ﬂ/l = 2p> &y = 1/2

b 2
The Heegner points now can be described as follows. If X = < ¢ > elLisa

vector of positive norm —A = ¢(X), then the matrix 2ap —b
~(ap b2\ 1/0 -1
(62) Q_<b/2 c>—2 1o )¥
defines a definite integral binary quadratic form of discriminant A = b? — 4pac = —q(X).

Here the I'y(p)-action on L corresponds to the natural right action on quadratic forms,
and the cycle Dy coincides with the CM point oy (resp. o_p) corresponding to Q (resp.
—Q) if Q is positive (resp. negative) definite as in the introduction. We then easily see

2
>
Qe2 4 ,/To(p) |FO(P)Q|

(6.3) Z(0,—A) = 2.

Let f e M} (FO ( p)) be a weakly holomorphic modular form and denote its Fourier
expansions at the cusps oo, 0 by

f(z) = > aln)e(nz) and  f(o,2) = 3 b(n)e(nz),

ne”Z ne[l)Z

respectively. By (6.3), we have

2
. —-A) = —f ().
(6.4) t/(0,—A) Qeg,g/ro(p)lro(p)glf (%0)

By means of Remark 4.9, we see that

t(0,0)=4 3 (a(-n)or(n) + pb(~n)ai(n).

ne ZZU



Bruinier and Funke, Traces of CM values of modular functions 25

We find a different expression for t;(0,0) by applying the residue theorem to the meromor-
phic 1-form f(z)(&2(z) — &l,(W,)(z)) dz on Ty(p)\H. This yields

EZ: a(—n)(a1(n) — pai(n/p)) = EZ: b(=n/p)(o1(n) — poi(n/p)),
nelxo nesrxo
and therefore

(6.5) t/(0,0) =2 XZ: (a(—n) + b(—n/p)) (al(n) + poy (n/p))

ne >0

For the modular traces of f with negative index n, we first recall that by Proposition

4.7, we have t;(0,n) = 0 unless n = —m? with m e N. Furthermore, (r(:z 0 ) € Lo 2.4
_ 0 -

and < (;n m> € Ly _p2.4,- This implies that the quantities r and 7" in Proposition 4.7 are
equal to 0. Thus

(6.6) tr(0,—m*) = —2m " (a(—mk) + b(—mk/p)).

k€Z>o

Collecting the terms (6.4), (6.5), (6.6) now shows that Theorem 4.5 implies Theorem
1.1 of the introduction: For f € M (rg ( p)) (i.e., f is in the +1-eigenspace for the Fricke
involution W},), we have a(n) = b(n/p), and t;(0, N) = 2t7(N) for N > 0. Thus, if a(0) = 0,
then '

G(r,f) = —10( /)

Finally note that —¢g(X) is congruent to a square modulo 4p for X € L (which we write
as —¢(X) = (4p)). Consequently, G(z, f) belongs to M. J’/ (p), the Kohnen plus space
of weakly holomorphic modular forms of weight 3/2 for the group I'g(4p) having a Fourier
expansion of the form

(6.7) g(r) = >, c(n)q".

nez
—n=[](4p)
If /€ M{(To(p)) is in the —1-cigenspace for W, we have a(n) = —b(n/p), and
IO(T7f) = 07

since we directly see t;(0, N) = 0 for N > 0, while for N < 0 we have t/(0, N) = 0 by (6.5),
(6.6).

1
For p =1, we get G(z, f) = Io(r f), and for f = J, we recover Zagier’s result.

7. Extensions

In this section, we consider other automorphic forms of weight 0 for I' as input for
the theta lift under consideration in this paper.
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7.1. The lift of the weight 0 Eisenstein series and log|A]. Forze H andse C, we
let

1

1., ol
bolz.5) =50 @5+ 1) > (302)7
7€, \SLy(Z)

be the (normalized) real analytic FEisenstein series of weight 0 for SL,(Z). Here

1 7 . . .
r,= <0 1) and (*(s) = n~*?T(s/2){(s) is the completed Riemann Zeta function.
Recall that &y(z,s) converges for f(s) > 1/2 and has a meromorphic continuation to C
with a simple pole at s =1/2 with residue 1/2. Furthermore, it is well known that
éoO(Zv —S) = 50(Z7S)'

We consider the quadratic space V(Q) as in (2.1) with the quadratic form
q(X) = det(X). For simplicity, we let L in this section be the lattice

b ¢
L_{<a _b>,a,b,LeZ}.

We have L¥/L =~ 7/27, the level of L is 4, and I" = SLy(Z) takes L to itself and acts trivi-
ally on L¥/L. We let ¢, ¢; be the standard basis of C[L*/L] corresponding to the cosets

h 0
h = ( 01 I ) with #; = 0 and /; = 1/2, respectively.
—h

We let K be the one-dimensional lattice Z together with the negative definite bilinear
form (b,b’) = —2bb’. We naturally have L¥/L ~ K* /K. We define a vector valued Eisen-
stein series &35 (7, s) of weight 3/2 for the representation py by

1 1\ .. el
53/2,K<f,s>=—@<”§)5 @s+1) 3 e D)y 0

y' el \I

where the Petersson slash operator is defined on functions f : H — C[K*/K] by

a7 ) (@) = $(2) 7 px () (7)

for y' = (y,4) eI". Here '’ is the inverse image of I',, inside I'. Again we have
&30, k(1,—58) = &35, k(1,5), as we will also see below. We set

(71) c9’7(‘5, S) = ((0@3/2_’]((4‘[,5‘))0 + (éa3/2’K(4T,S))1.

Then the value of #(z,s) at s = 1/2 is a (non-holomorphic) modular form of weight 3/2
for I'p(4) and is equal to Zagier’s Eisenstein series as in [11], [25]. This can be seen as fol-
lows. The right-hand side of (7.1) realizes the isomorphism of vector valued modular forms
of type px with the space of modular forms for I'g(4) satisfying the Kohnen plus-space
condition, see [8], section 5. On the other hand, Zagier’s Eisenstein series is the only Eisen-
stein series of weight 3/2 for I'y(4) in the plus-space and has the same constant coefficient
as 7 (t,1/2). Note that our Z (7, s) has a different normalization as Zagier’s # (t,s), see
also [24], section 3.
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Theorem 7.1. With the notation as above, we have

(72) I(‘L’7 éao(Z,S)) =" <S+%>53/Z$K(T,S).

Proof-  As in [2], section 4 we define the theta series

Ok(t,,f) = S e(—t(xi + ) )e(—(x1 +B/2,2))es.

he K¥/K x1e K+h

By (4.1) we then have

2
O(t,z) = — 03—);2 Zez(w + x37) % exp (—n% lw + X3‘L'|2) Ok (t, —wx, —x3x) dx dy
w, X3
V& 2 2 n’y? 2
=—5 >onm Y. (ct+d) exp(—nT let + d| )@K(T, —ndx, —ncx) dx dy.
v n=1 c,deZ
gcd(cil):l

b
Now take a,b e Z such that )’ = ((a d),\/c1+d> eT’'. By [2], Theorem 4.1 we
find ¢

(7.3) Ok (t, —ndx, —nex) = (¢t +d) " (7)Ok(y't, —nx, 0).

Hence
o0 1’12 2
Oz =—=3:n" ¥ (ct+d)’? exp(—n—y et + d|2)
U n=1 yrer\IY v

x px (7)Ok(y't, —nx,0) dx dy.
Then by the standard Rankin-Selberg unfolding trick we obtain for R(s) > 1:

I(r,é”‘o(z,s)) ={"2s+1) [ O, Z)ys+%
Co\H

R v, P =2 _ 32
=—v T 2s+ 1) n" > (ct+d)
n=1 yrerAr
o0 2.,2 d
X fexp(—nn—y ]cr+d!2>y”§_y
0 v Y

X px' (") (Jl Ok (y'7, —nx,0) dX>

— 25+ 1>r<§ (s+3)+ 1>n—<1+%(s+;>)g<s +3)
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1 1
1 vi(“i 1 1
X5 2 P (7)eo
2 perr leT + d|s_% (ct+d)*? :

1
= <s+§>£)3/2’K(T,S). ]

Taking residues at s = 1/2 on both sides of (7.2) we obtain

Corollary 7.2.

1
I(Tv 1) = 263/2,]((775) .

We let

A(Z) — eZm’z H (1 _ e2m’nz)24

n=1
be the Delta function. We normalize the Petersson metric of A such that
IA(2)]| = e *C|A(z) (4my)°],

with C = = (y + log4n).

N —

Theorem 7.3. We have

- 31 10e(18E)) = & (7).

Proof. Recall that the Kronecker limit formula states

(7.4) — 5 log(|A()*) = lim(4(z.5) ¢ (25 1).

By (7.4), Theorem 7.1 and Corollary 7.2 we have

— I (xlog(1A) 1)) = i (75, 80(2,8)) — 178" (25— 1))

2

. 1 1
= l,ln} ((* <S+§>g3/2,K(T7S) — 2(*(25‘ — 1)53/2_[((1,5))

1 1 1
= ‘53//2 (T’E) + 5 (10g(47z) - V)fo@a/z,K<T,§)-

Here we used

M (s) = - % (log(4n) —y) + O(s — 1).
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The theorem now follows from
1 1 1
— EI(T, log(4n) — C) ==5 (10g(4n) — y)gg,/z’]( T’i . O

With the notation as in the introduction, the cycles Z(m,v) for m >0 with
—m = 0,1 mod 4, are given by, see [24], section 3,

F(m,v) = (Z(m),Z(m,v)) e CHL(4).

Here % (m) is the divisor in .# given by the moduli stack over Z of elliptic curves E
such that there is an embedding @/,, — End(E), where (), is the order of discriminant —m
in Q(y/=m). Thus & (m)(C) = 2,,/SLy2(Z) =: Z(m) (with each elliptic curve counted with

o 1
multiplicity #T'[(E)) Moreover,

_ 1

:.(m,v)zz > 50(2\/17X)
Xel*
X, X)=m

is a Green function for Z(m). For m < 0, the % (m,v) are defined similarly using &° with
the divisor either supported at oo (if m = —n? or m = 0) or empty (otherwise).

Remark 7.4. 1In [24] and in section 6 (with p = 1), the cycles Z(m) are constructed
b 2 -

. _2>;a,b, ce Z} in V(Q). Since L = 2L*,

we can use L instead. On the other hand, for the proof of Theorem 7.1, the setting of vector

valued modular forms and theta series, in particular (7.3), is quite convenient. Via (7.1) we

then can go back to the scalar valued situation.

using the trivial coset of the lattice L = { <

Theorem 7.5. We have

meZ 2

(7.5) S (B (m,v),05g" = }%(r 1).

Proof.  We only show this for m > 0. For the other coefficients we refer to [24]; they
can be done with the methods developed in this paper as well. We have

f’<171> — 1 J- Z (00(2\/1—)/‘/72) 10g(||A(Z)||)e”i<X’X)4T.

2 _EMXEL#

This follows from (7.2). By (3.6) we have

16 1 T, [eeve(ac) = -3 5 oe(ac)
%(X,X):m

1 . dxdy
+%A£:(m,v) 5

Since the divisor of A over Z is disjoint to Z'(m), we now easily see using the definition of
the star product that (7.6) is equal to 4{Z (m,v),@®). [
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Our method should generalize to modular curves of higher level. Furthermore, the
results above suggest that one should consider I(z,log||f||) for other modular forms than
A. In particular, the case when f is a Borcherds lift [2], [4] could be of interest.

7.2. The lift of Maass cusp forms. We let chusp(F\D) be the space of cuspidal square
integrable functions on I'\D = M. It is clear that we consider I(z, ) for f € Lcusp(F\D)
as well. It turns out that this lift is closely relating to another theta lift first considered by
Maass [22] and later reconsidered by Duke [7] and Katok and Sarnak [12]. Namely, they
considered, in our notation, the space V'~, which is the space V' together with the negative
bilinear form —(, ). Hence V'~ has signature (2, 1). The Siegel theta series for V'~ is given
by

011(T727¢2,1) = Z (pZ,l(X7T7Z)
XelL+h

with ¢, | (X, 7,z) = ve™(-4X X)X X)) Then 6,(z, z, ¢, ;) is automorphic with weight 1/2
for 7 € H. We can then define

ef) = 5 ([0 TS o

heL*/L

for f e L2 (T\D). In fact, in [22], [12] only Maass forms are considered, that is, eigen-
62 62

y@xzw

cusp

functions of the hyperbolic Laplacian A =

For the relationship between I and Iy, first recall that the Maass raising and lowering
. 0 0
operators are given by Ry = 2i P + ko' and L = —2iv? FIa Hence R _»L; = —A,’c, where
T T
A}, is the weight k& Laplacian for € H as in [4]. We also need the operator &; which maps
forms of weight k£ to forms of “dual” weight 2 — k. It is given by

&) (x) =" 2 Lef (7) = R f (1),

Lemma 7.6. The two kernel functions gg\, = ¢ and ¢, | of the two lifts I and Iy sat-
isfy the following fundamental relationship:

$12021(X,7,2) 0 = —7pgp (X, 7, 2).
Furthermore, we have

—4A1/€02.1(Xafa2) = AWZ,I(vavZ)'
172, :

Proof- This can be easily seen by a direct and straightforward calculation. Alterna-
tively, one can switch to the Fock model of the Weil representation, see e.g. [5], section 4,
and perform the calculation there. []

Theorem 7.7. For f e L:, . (I'\D), we have

cusp(
Siplu(z, f) = —nl(z, f).

If f is an eigenfunction of A with eigenvalue 1, then we also have
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Eal(5.f) =~ 1 In(z. ).

Proof. The first assertion immediately follows from the lemma. For the second, note
that &3/5¢1 2 = R30L1 0 = —A{/z. Then by the adjointness of A we see

1 1
E3pl(t, f) = —Efa/zfl/le(T»f) 1alu (T, f)

The theorem shows that the two lifts are equivalent on Maass forms. Note however,
that due to the moderate growth of 0,(z,z, ¢, ;) one cannot define //(f) on Mj. On the
other hand, since I(, f) is holomorphic for f € M, we have &;,1(z, f) = 0.

7.3. The lift of weak Maass forms. In [5], section 3, we introduced the space of weak
Maass forms Hy(T"). It consists of those forms f(z) on D of weight k for I which are anni-
hilated by the weight k Laplacian and satisfy f(o,z) = O(e®) as z — oo for some constant
C. Here we are only interested in Hy(I"). A form f € Hy(T") can be writtenas f = f + f—,
where the Fourier expansions of /™ and /= are of the form

[ (orz) = 32 af (n)e(nz),

nelz
%

S (orz) = a, O+ 2 a,(ne(nz),

1
n e;Z—{O}

where a; (n) = 0 for n « 0 and a; (n) = 0 for n > 0. We let H; (') be the subspace of those
S that satisty a, (n) = 0 for n = 0 (for all /). It consists for those f € Hy(I') such that f~ is
exponentially decreasing at the cusps. Its significance lies in the fact that & maps H; (T')
onto S>(I"), the space of weight 2 cusp forms for I'. We define t; (7, m) for m = 0 as before,
while we define the modular trace of negative index t; (s, —dm?) by replacing a,(n) with the
holomorphic coefficients a; (n).

Theorem 7.8. Let f € H{ (') and assume that a; (0) = 0 for all /. Then

It f) = X tr(h,m)g™ + Xty (h, —dm?) g~

m=0 m>0

Proof- Since f is harmonic, the proofs for the positive coefficients and for
g X)=m¢ —d (@X)z, the non-split case, are still valid. That is, Propositions 4.10 and 4.11
carry over with no change. The term for X = 0 stays also the same. Hence we only need to
analyze the orbital integrals over the isotropic lines and for the split case, ¢(X) = —dm?.
For the extension of Proposition 4.12, we let X € L_,,,» and see

[£(2)X 9" (VoX,p2) ——ff (2)00 3 " (VX yz)

M yell yell

-5 d(f (2)2 3 &(VoX, yz>) -5 L )2 X Q(/ox ).
I M

yel yell
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The first term is handled in exactly the same manner as in the proof of Proposition 4.12.
Only at the end of the proof of Lemma 5.3, when inserting the Fourier expansion of f,
an extra term occurs. But one easily sees that this extra term vanishes in the limit. For the
second term, we have

J(@E)0 5 Qi) - - | d<5f(2) 5 Vi, yz>> + [ (03(E) £ WX 2)

yell yel

But the first summand vanishes by Stokes’ theorem, since of (z) is rapidly decreasing as
f € H, while the second term is zero since ddf(z) = 0 as f is harmonic. The orbital inte-
grals over the isotropic lines are treated in the same manner. [
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