D.R. Turner
A conformationally flexible, urea-based tripodal anion receptor: Solid-state, solution, and theoretical studies
Turner, D.R.; Paterson, M.J.; Steed, J.W.
Abstract
Tripodal tris(urea) cationic receptors 1 and 2 containing p-tolyl or octyl substituents, respectively, have been synthesized, and their association behavior with anionic guests has been studied via a variety of methods. The receptors are based around a hexasubstituted aryl core and contain both urea and pyridinium functionalities. For 1:1 complexes, anions reside within the central cavity of the host species, held by hydrogen bonds from both NH and CH donors. The following host−anion complexes have been characterized by X-ray crystallography: 1−(Br)3, 1−(PF6)3·2(CH3)2CO, and 1−(NO3)1.5(PF6)1.5. Each structure contains the receptor in a significantly different geometry, highlighting the anion-dependent conformational flexibility of 1. Solution 1H NMR spectroscopic titrations have shown the two host species to display significant affinity for both halides and hydrogen sulfate and strongly suggest the persistence of CH···X- interactions despite the presence of “stronger” NH donor groups. Variable-temperature 1H NMR studies on the more soluble octyl derivative 2 show that there is a distinct change in conformation associated with the formation of a 1:1 host/guest complex. Computations using density functional theory (with the B3LYP functional) have been employed to aid in understanding the geometry of the 1:1 host/chloride complexes of 1 and 2. These experiments suggest that the lowest energy conformation for 1−Cl is one in which the ureidopyridinium arms are orientated upward forming a cavity that is sealed by CH···π interactions, effectively forming a unimolecular capsule, whereas for 2 a less symmetrical “2-up, 1-down” geometry is favored.
Citation
Turner, D., Paterson, M., & Steed, J. (2006). A conformationally flexible, urea-based tripodal anion receptor: Solid-state, solution, and theoretical studies. Journal of Organic Chemistry, 71(4), 1598-1608. https://doi.org/10.1021/jo052339f
Journal Article Type | Article |
---|---|
Online Publication Date | Jan 21, 2006 |
Publication Date | 2006-02 |
Journal | Journal of Organic Chemistry |
Print ISSN | 0022-3263 |
Electronic ISSN | 1520-6904 |
Publisher | American Chemical Society |
Peer Reviewed | Peer Reviewed |
Volume | 71 |
Issue | 4 |
Pages | 1598-1608 |
DOI | https://doi.org/10.1021/jo052339f |
Public URL | https://durham-repository.worktribe.com/output/1565555 |
You might also like
Scrolling in Supramolecular Gels: A Designer’s Guide
(2024)
Journal Article
Pushing Technique Boundaries to Probe Conformational Polymorphism.
(2023)
Journal Article
Metal-based gels: Synthesis, properties, and applications
(2023)
Journal Article
Vapor Sorption and Halogen-Bond-Induced Solid-Form Rearrangement of a Porous Pharmaceutical
(2023)
Journal Article
Highly Thermally Resistant Bisamide Gelators as Pharmaceutical Crystallization Media
(2022)
Journal Article
Downloadable Citations
About Durham Research Online (DRO)
Administrator e-mail: dro.admin@durham.ac.uk
This application uses the following open-source libraries:
SheetJS Community Edition
Apache License Version 2.0 (http://www.apache.org/licenses/)
PDF.js
Apache License Version 2.0 (http://www.apache.org/licenses/)
Font Awesome
SIL OFL 1.1 (http://scripts.sil.org/OFL)
MIT License (http://opensource.org/licenses/mit-license.html)
CC BY 3.0 ( http://creativecommons.org/licenses/by/3.0/)
Powered by Worktribe © 2025
Advanced Search