I.A. Watson
Modeling the dynamics of fermentation and respiratory processes in a groundwater plume of phenolic contaminants interpreted from laboratory-to field-scale
Watson, I.A.; Oswald, S.E.; Banwart, S.A.; Crouch, R.S.; Thornton, S.F.
Authors
S.E. Oswald
S.A. Banwart
R.S. Crouch
S.F. Thornton
Abstract
A biodegradation model with consecutive fermentation and respiration processes, developed from microcosm experiments and simulated mathematically with microbial growth kinetics, has been implemented into a field-scale reactive transport model of a groundwater plume of phenolic contaminants. Simulation of the anaerobic plume core with H2 and acetate as intermediate products of biodegradation allows the rates and parameter values for fermentation processes and individual respiratory terminal electron accepting processes (TEAPS) to be estimated using detailed, spatially discrete, hydrochemical field data. The modeling of field-scale plume development includes consideration of microbial acclimatization, substrate toxicity toward degradation, bioavailability of mineral oxides, and adsorption of biogenic Fe(II) species in the aquifer, identified from complementary laboratory process studies. The results suggest that plume core processes, particularly fermentation and Fe(III)-reduction, are more important for degradation than previously thought, possibly with a greater impact than plume fringe processes (aerobic respiration, denitrification, and SO4-reduction). The accumulation of acetate as a fermentation product within the plume contributes significantly to the mass balance for carbon. These results demonstrate the value of quantifying fermentation products within organic contaminant plumes and strongly suggest that the conceptual model selected for reactive processes plays a dominant role in the quantitative assessment of risk reduction by naturally occurring biodegradation processes.
Citation
Watson, I., Oswald, S., Banwart, S., Crouch, R., & Thornton, S. (2005). Modeling the dynamics of fermentation and respiratory processes in a groundwater plume of phenolic contaminants interpreted from laboratory-to field-scale. Environmental Science and Technology, 39(22), 8829-8839. https://doi.org/10.1021/es0507970
Journal Article Type | Article |
---|---|
Publication Date | 2005-11 |
Deposit Date | Apr 24, 2008 |
Journal | Environmental Science and Technology |
Print ISSN | 0013-936X |
Electronic ISSN | 1520-5851 |
Publisher | American Chemical Society |
Peer Reviewed | Peer Reviewed |
Volume | 39 |
Issue | 22 |
Pages | 8829-8839 |
DOI | https://doi.org/10.1021/es0507970 |
Keywords | Landfill leachate plume, Deep sandstone aquifer, Shallow sandy Aquifer, Tar distillate plume, Natural attenuation, Organic-compounds, Petroleum-hydrocarbons, Reactive transport, Sulfate reduction, In-situ. |
Public URL | https://durham-repository.worktribe.com/output/1563642 |
Publisher URL | http://pubs.acs.org/cgi-bin/article.cgi/esthag/2005/39/i22/pdf/es0507970.pdf |
You might also like
Observations on Mohr-Coulomb plasticity under plane strain
(2013)
Journal Article
Apparatus for testing concrete under multiaxial compression at elevated temperature (mac2T)
(2006)
Journal Article
Finite element non-linear dynamic soil-fluid-structure interaction
(2002)
Book Chapter
Downloadable Citations
About Durham Research Online (DRO)
Administrator e-mail: dro.admin@durham.ac.uk
This application uses the following open-source libraries:
SheetJS Community Edition
Apache License Version 2.0 (http://www.apache.org/licenses/)
PDF.js
Apache License Version 2.0 (http://www.apache.org/licenses/)
Font Awesome
SIL OFL 1.1 (http://scripts.sil.org/OFL)
MIT License (http://opensource.org/licenses/mit-license.html)
CC BY 3.0 ( http://creativecommons.org/licenses/by/3.0/)
Powered by Worktribe © 2025
Advanced Search