Skip to main content

Research Repository

Advanced Search

The X philes: structure-specific endonucleases that resolve Holliday junctions.

Sharples, G.J.

Authors



Abstract

Genetic recombination is a critical cellular process that promotes evolutionary diversity, facilitates DNA repair and underpins genome duplication. It entails the reciprocal exchange of single strands between homologous DNA duplexes to form a four-way branched intermediate commonly referred to as the Holliday junction. DNA molecules interlinked in this way have to be separated in order to allow normal chromosome transmission at cell division. This resolution reaction is mediated by structure-specific endonucleases that catalyse dual-strand incision across the point of strand cross-over. Holliday junctions can also arise at stalled replication forks by reversing the direction of fork progression and annealing of nascent strands. Resolution of junctions in this instance generates a DNA break and thus serves to initiate rather than terminate recombination. Junction resolvases are generally small, homodimeric endonucleases with a high specificity for branched DNA. They use a metal-binding pocket to co-ordinate an activated water molecule for phosphodiester bond hydrolysis. In addition, most junction endonucleases modulate the structure of the junction upon binding, and some display a preference for cleavage at specific nucleotide target sequences. Holliday junction resolvases with distinct properties have been characterized from bacteriophages (T4 endo VII, T7 endo I, RusA and Rap), Bacteria (RuvC), Archaea (Hjc and Hje), yeast (CCE1) and poxviruses (A22R). Recent studies have brought about a reappraisal of the origins of junction-specific endonucleases with the discovery that RuvC, CCE1 and A22R share a common catalytic core.

Citation

Sharples, G. (2001). The X philes: structure-specific endonucleases that resolve Holliday junctions. Molecular Microbiology, 39, 823-834. https://doi.org/10.1046/j.1365-2958.2001.02284.x

Journal Article Type Article
Publication Date 2001
Journal Molecular Microbiology
Print ISSN 0950-382X
Electronic ISSN 1365-2958
Publisher Wiley
Volume 39
Pages 823-834
DOI https://doi.org/10.1046/j.1365-2958.2001.02284.x
Publisher URL http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=11251805