Skip to main content

Research Repository

Advanced Search

Major changes in ice stream dynamics during deglaciation of the north-western margin of the Laurentide Ice Sheet

Stokes, C.R.; Clark, C.D.; Storrar, R.


C.D. Clark

R. Storrar


Victoria Island lies at the north-western limit of the former North American (Laurentide) Ice Sheet in the Canadian Arctic Archipelago and displays numerous cross-cutting glacial lineations. Previous work suggests that several ice streams operated in this region during the last (Wisconsinan) glaciation and played a major role in ice sheet dynamics and the delivery of icebergs into the Arctic Ocean. This paper produces the first detailed synthesis of their behaviour from the Last Glacial Maximum through to deglaciation (21–9.5 cal ka BP) based on new mapping and a previously published radiocarbon-constrained ice sheet margin chronology. Over 70 discrete ice flow events (flow-sets) are ‘fitted’ to the ice margin configuration to allow identification of several ice streams ranging in size from large and long-lived (thousands of years) to much smaller and short-lived (hundreds of years). The reconstruction depicts major ice streams in M'Clure Strait and Amundsen Gulf which underwent relatively rapid retreat from the continental shelf edge at some time between 15.2 and 14.1 cal ka BP: a period which encompasses climatic warming and rapid sea level rise (meltwater pulse-1a). Following this, overall retreat was slower and the ice streams exhibited asynchronous behaviour. The Amundsen Gulf Ice Stream continued to operate during ice margin retreat, whereas the M'Clure Strait Ice Stream ceased operating and was replaced by an ice divide within 1000 years. This ice divide was subsequently obliterated by another short-lived phase of ice streaming in M'Clintock Channel 13 cal ka BP. The timing of this large ice discharge event coincides with the onset of the Younger Dryas. Subsequently, a minor ice divide developed once again in M'Clintock Channel, before final deglaciation of the island shortly after 9.5 cal ka BP. It is concluded that large ice streams at the NW margin of the Laurentide Ice Sheet, equivalent in size to the Hudson Strait Ice Stream, underwent major changes during deglaciation, resulting in punctuated delivery of icebergs into the Arctic Ocean. Published radiocarbon dates constrain this punctuated delivery, as far as is possible within the limits imposed by their precision, and we note their coincidence with pulses of meltwater delivery inferred from numerical modelling and ocean sediment cores.


Stokes, C., Clark, C., & Storrar, R. (2009). Major changes in ice stream dynamics during deglaciation of the north-western margin of the Laurentide Ice Sheet. Quaternary Science Reviews, 28(7-8), 721-738.

Journal Article Type Article
Publication Date Apr 1, 2009
Deposit Date Sep 24, 2009
Journal Quaternary Science Reviews
Print ISSN 0277-3791
Publisher Elsevier
Peer Reviewed Peer Reviewed
Volume 28
Issue 7-8
Pages 721-738