RJ Williams
Experiments and Computations on Large Tip Clearance Effects in a Linear Cascade
Williams, RJ; Gregory-Smith, DG; He, Li; Ingram, Grant
Abstract
Large tip clearances typically in the region of 6% exist in the high pressure (HP) stages of compressors of industrial gas turbines. Due to the relatively short annulus height and significant blockage, the tip clearance flow accounts for the largest proportion of loss in the HP. Therefore increasing the understanding of such flows will allow for improvements in design of such compressors, increasing efficiency, stability, and the operating range. Experimental and computational techniques have been used to increase the physical understanding of the tip clearance flows through varying clearances in a linear cascade of controlled-diffusion blades. This paper shows two unexpected results. First the loss does not increase with clearances greater than 4% and second there is an increase in blade loading toward the tip above 2% clearance. It appears that the loss production mechanisms of the pressure driven tip clearance jet do not increase as the clearance is increased to large values. The increase in blade force is attributed to the effect of the strong tip clearance vortex, which does not move across the blade passage to the pressure surface, as is often observed for high stagger blading. These results may be significant for the design of HP compressors for industrial gas turbines.
Citation
Williams, R., Gregory-Smith, D., He, L., & Ingram, G. (2010). Experiments and Computations on Large Tip Clearance Effects in a Linear Cascade. Journal of Turbomachinery, 132(2), Article 021018. https://doi.org/10.1115/1.3104611
Journal Article Type | Article |
---|---|
Publication Date | 2010-01 |
Journal | Journal of Turbomachinery |
Print ISSN | 0889-504X |
Electronic ISSN | 1528-8900 |
Publisher | American Society of Mechanical Engineers |
Peer Reviewed | Peer Reviewed |
Volume | 132 |
Issue | 2 |
Article Number | 021018 |
DOI | https://doi.org/10.1115/1.3104611 |
Public URL | https://durham-repository.worktribe.com/output/1546133 |
You might also like
Entropy generation rate optimisation for profiled endwall design for axial turbines
(2024)
Presentation / Conference Contribution
Extracting Quantitative Streamline Information from Surface Flow Visualization Images in a Linear Cascade using Convolutional Neural Networks
(2024)
Presentation / Conference Contribution
Using Fluid Curtains to Improve Sealing Performance in Turbomachinery Applications
(2024)
Journal Article
Downloadable Citations
About Durham Research Online (DRO)
Administrator e-mail: dro.admin@durham.ac.uk
This application uses the following open-source libraries:
SheetJS Community Edition
Apache License Version 2.0 (http://www.apache.org/licenses/)
PDF.js
Apache License Version 2.0 (http://www.apache.org/licenses/)
Font Awesome
SIL OFL 1.1 (http://scripts.sil.org/OFL)
MIT License (http://opensource.org/licenses/mit-license.html)
CC BY 3.0 ( http://creativecommons.org/licenses/by/3.0/)
Powered by Worktribe © 2024
Advanced Search