Professor Mikhail Menshikov mikhail.menshikov@durham.ac.uk
Professor
Logarithmic speeds for one-dimensional perturbed random walks in random environments
Menshikov, M.V.; Wade, Andrew R.
Authors
Professor Andrew Wade andrew.wade@durham.ac.uk
Professor
Abstract
We study the random walk in a random environment on Z+={0,1,2,…}, where the environment is subject to a vanishing (random) perturbation. The two particular cases that we consider are: (i) a random walk in a random environment perturbed from Sinai’s regime; (ii) a simple random walk with a random perturbation. We give almost sure results on how far the random walker is from the origin, for almost every environment. We give both upper and lower almost sure bounds. These bounds are of order (logt)β, for β∈(1,∞), depending on the perturbation. In addition, in the ergodic cases, we give results on the rate of decay of the stationary distribution.
Citation
Menshikov, M., & Wade, A. R. (2008). Logarithmic speeds for one-dimensional perturbed random walks in random environments. Stochastic Processes and their Applications, 118(3), 389-416. https://doi.org/10.1016/j.spa.2007.04.011
Journal Article Type | Article |
---|---|
Publication Date | Mar 1, 2008 |
Deposit Date | Mar 1, 2011 |
Publicly Available Date | Jan 31, 2013 |
Journal | Stochastic Processes and their Applications |
Print ISSN | 0304-4149 |
Electronic ISSN | 1879-209X |
Publisher | Elsevier |
Peer Reviewed | Peer Reviewed |
Volume | 118 |
Issue | 3 |
Pages | 389-416 |
DOI | https://doi.org/10.1016/j.spa.2007.04.011 |
Keywords | Random walk in perturbed random environment, Logarithmic speeds, Almost sure behaviour, Slow transience. |
Public URL | https://durham-repository.worktribe.com/output/1543085 |
Files
Accepted Journal Article
(351 Kb)
PDF
Copyright Statement
NOTICE: this is the author’s version of a work that was accepted for publication in Stochastic processes and their applications. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in Stochastic processes and their applications, 118(3), 2008, 10.1016/j.spa.2007.04.011
You might also like
Reflecting Brownian motion in generalized parabolic domains: explosion and superdiffusivity
(2023)
Journal Article
Stochastic billiards with Markovian reflections in generalized parabolic domains
(2023)
Journal Article
Random walks avoiding their convex hull with a finite memory
(2019)
Journal Article
Long term behaviour of two interacting birth-and-death processes
(2018)
Journal Article
Downloadable Citations
About Durham Research Online (DRO)
Administrator e-mail: dro.admin@durham.ac.uk
This application uses the following open-source libraries:
SheetJS Community Edition
Apache License Version 2.0 (http://www.apache.org/licenses/)
PDF.js
Apache License Version 2.0 (http://www.apache.org/licenses/)
Font Awesome
SIL OFL 1.1 (http://scripts.sil.org/OFL)
MIT License (http://opensource.org/licenses/mit-license.html)
CC BY 3.0 ( http://creativecommons.org/licenses/by/3.0/)
Powered by Worktribe © 2024
Advanced Search