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Abstract

We study the random walk in random environment on Z+ = {0, 1, 2, . . .}, where
the environment is subject to a vanishing (random) perturbation. The two partic-
ular cases that we consider are: (i) random walk in random environment perturbed
from Sinai’s regime; (ii) simple random walk with random perturbation. We give
almost sure results on how far the random walker is from the origin, for almost every
environment. We give both upper and lower almost sure bounds. These bounds are
of order (log t)β, for β ∈ (1,∞), depending on the perturbation. In addition, in the
ergodic cases, we give results on the rate of decay of the stationary distribution.
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speeds; almost sure behaviour; slow transience.
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1 Introduction

The random walk in one-dimensional random environment in Sinai’s regime (which we
describe in detail below) is a famous example of a random walk with ‘logarithmic speed’:
after a long time t, the random walk is, roughly speaking, about (log t)2 from the origin.
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In this paper we give other examples of random walks in random environments with
logarithmic speeds; in these cases the environment is subject to a random perturbation.

Our results cover both recurrent and transient cases. In the models that we consider,
the speed is, roughly speaking, of order (log t)β, where β depends upon the model. We
shall see that for the models we consider, all β ∈ (1,∞) are attained. Examples of
logarithmic transience for random walks (such as given in our Theorem 3 below) are
seemingly rare. The terminology ‘speed’ is perhaps more natural in the transient case;
in the recurrent case ‘speed’ can be thought of as a measure of the rate of growth of the
upper envelope of the random walk. Before we give our main results, we describe the
probabilistic setting in which we work.

Given an infinite sequence ω = (p0, p1, p2, . . .) such that, for some δ ∈ (0, 1/2), δ ≤
pi ≤ 1 − δ for all i ∈ Z+ := {0, 1, 2, . . .}, we consider (ηt(ω); t ∈ Z+) the nearest-
neighbour random walk on Z+ defined as follows. Set η0(ω) = r for some r ∈ Z+, and for
n ∈ N := {1, 2, . . .},

P [ηt+1(ω) = n− 1|ηt(ω) = n] = pn,

P [ηt+1(ω) = n+ 1|ηt(ω) = n] = 1− pn =: qn, (1)

and P [ηt+1(ω) = 0|ηt(ω) = 0] = p0, P [ηt+1(ω) = 1|ηt(ω) = 0] = 1 − p0 =: q0. The
given form for the reflection at the origin ensures aperiodicity, which eases some technical
complications.

We call the sequence of jump probabilities ω our environment. As an example, the
case pi = 1/2 for all i gives the symmetric simple random walk on Z+.

Here, we take ω itself to be random — then ηt(ω) is a random walk in random en-
vironment (RWRE). More precisely, p0, p1, . . . will be random variables on a probability
space (Ω,F ,P). We describe our particular model at the end of this section. The RWRE
was first studied by Kozlov [17] and Solomon [28] (in the case where pi, i ≥ 0 form an
i.i.d. sequence). There has been considerable interest in the RWRE recently; see for ex-
ample [22] or [30] for surveys. Some authors (e.g. [27]) consider the RWRE with state
space the whole of Z. For our model we take the case of Z+, which gives rise to a richer
set of models in the sense that we can obtain positive-recurrent behaviour.

An important case in which the random environment is homogeneous and in some sense
critical is the so-called Sinai’s regime. Here (p0, p1, p2, . . .) is a sequence of i.i.d. random
variables satisfying the condition E[log(p1/q1)] = 0, where E is expectation under P. In
this case, a result dating back to Solomon [28] says that ηt(ω) is null-recurrent for P-
almost every ω. Solomon’s result shows that Sinai’s regime is critical in the sense that,
for an i.i.d. random environment, ηt(ω) is respectively ergodic (that is positive-recurrent,
here) or transient as E[log(p1/q1)] > 0 or E[log(p1/q1)] < 0.

A notable property of the RWRE in Sinai’s regime is its speed — roughly speaking
ηt(ω) is of order (log t)2 for large t. One way to state this more precisely (for another,
see the discussion in Section 2.3) is in terms of ‘almost sure’ behaviour, i.e. results that
hold P -almost surely (a.s.) for P-almost every (a.e.) ω. (For the remainder of this paper,
we omit the P and P when the context is clear.) This is the kind of result we give in
the present paper. In Sinai’s regime for the RWRE on Z+, almost sure upper and lower
bounds were given by Deheuvels and Révész ([4], Theorem 4 in particular). A similar
upper bound result was given by Comets, Menshikov and Popov (see [1], Theorem 3.2),
proved via a martingale technique related to some of the ideas in the present paper. Sharp
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results are given by Hu and Shi in [14]. In particular, the following iterated logarithm
result follows from Theorem 1.3 of [14].

Theorem 1 [14] Suppose that (p0, p1, p2, . . .) is an i.i.d. sequence with E[log(p1/q1)] = 0
and Var(p1) > 0. Then there exists a constant K ∈ (0,∞) (given explicitly in [14]) such
that, for a.e. ω, a.s., for any ε > 0,

(i) for all but finitely many t

ηt(ω)

(log t)2
≤ (1 + ε)K log log log t;

(ii) for infinitely many t
ηt(ω)

(log t)2
≥ (1− ε)K log log log t.

Note that ‘a.e. ω’ is short for ‘P-almost every environment ω’, and ‘a.s.’ is short for ‘P -
almost surely’. We use this shorthand in the statements of all our results. Our methods
do not enable our results to be as sharp as those in [14]; the best that we obtain in Sinai’s
regime is included in Theorem 4 below. However, we obtain a much wider array of results.

We remark that a range of polynomial speeds can be attained in certain transient
homogeneous random environment regimes (see e.g. [16]). In this paper we are interested
primarily in logarithmic speed results like Theorem 1, for random environments that are
asymptotically homogeneous. Our main results are almost sure upper bounds for ηt(ω)
that are valid for a.e. ω and all but finitely many t, and almost sure lower bounds for
ηt(ω) that are valid for a.e. ω either for all but finitely many t (if ηt(ω) is transient, see
e.g. Theorem 3) or for infinitely many t (if ηt(ω) is recurrent, see e.g. Theorem 2). These
bounds are all of size (log t)β, for some β ∈ (1,∞) that is a function of α (the size of
the perturbation), depending on the model in question, with higher order logarithmic
corrections.

We study two particular cases of random environment. In the first, our environment
will be a perturbation of the i.i.d. environment of Sinai’s regime (see Section 2.1). In the
second, our environment will be a random perturbation of the simple symmetric random
walk (see Section 2.2). By studying a range of perturbations, we obtain a spectrum of
possible behaviour.

The related paper [21] employs the method of Lyapunov functions (see [6]) to give
qualitative characteristics for these models (amongst somewhat more general results):
specifically, criteria for recurrence, transience and positive-recurrence (ergodicity, here).
In the present paper we are concerned with corresponding quantitative behaviour: specif-
ically, speeds (for those cases with logarithmic speed) and, secondarily, the rates of decay
of the stationary distribution in the ergodic cases identified in [21]. We summarize the
relevant results from [21] at convenient points in Section 2 below.

The proofs of the main results in the present paper proceeds by relating the position
of the random walk to some expected hitting times. The latter are analyzed (over all
environments) using estimates for sums of independent random variables; this relies on
(mostly well-known) strong limit theorems.

We now give a formal description of the RWRE model that we study here. Fix
δ ∈ (0, 1/2). Let (ξi, Yi), i ∈ N, be a sequence of i.i.d. random vectors on some probability
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space (Ω,F ,P), such that

P[δ ≤ ξ1 ≤ 1− δ] = 1, (2)

and Y1 takes values in [−1, 1]. The condition (2) is sometimes referred to as uniform
ellipticity. Note that we allow Y1 and ξ1 to be dependent.

We fix α > 0. For a particular realization of the sequence (ξi, Yi), i ∈ N, we define
p0 = q0 = 1/2 and the quantities pn and qn, n = 1, 2, 3, . . . as follows:

pn :=


ξn + Ynn

−α if (δ/2) ≤ ξn + Ynn
−α ≤ 1− (δ/2)

δ/2 if ξn + Ynn
−α < (δ/2)

1− (δ/2) if ξn + Ynn
−α > 1− (δ/2)

qn := 1− pn. (3)

A particular realization of (pn;n ∈ N) specifies our random environment ω, and is given
in terms of the ξi and Yi as in (3). For a given environment ω, the stochastic process
(ηt(ω); t ∈ Z+) as defined at (1) is an irreducible, aperiodic Markov chain (under P ); the
probability measure P in (1) is known as the quenched measure (the measure given a fixed
environment ω).

Under condition (2), we have that there exists n0 ∈ N such that, for a.e. ω, (δ/2) <
ξn + Ynn

−α < 1 − (δ/2) for all n ≥ n0 (since the Yn are bounded). Thus, for all n ≥ n0,
(3) implies that, for a.e. ω,

pn = ξn + Ynn
−α, qn = 1− ξn − Ynn−α, (n ≥ n0).

The conditions on the variables in (3) ensure that, for a.e. ω, (δ/2) ≤ pn ≤ 1 − (δ/2)
for all n so that pn and qn are true probabilities bounded strictly away from 0 and 1, as
required by our condition on ω given just before (1).

2 Main results

In this section we describe in detail two particular cases of the model formulated in the
previous section, along with our main results in each case. Then in Section 2.3 we make
further remarks and state some open problems.

2.1 Perturbation of random walk in random environment in
Sinai’s regime

Now we describe our first particular case of the model given in Section 1. For n ∈ N set

ζn := log

(
ξn

1− ξn

)
, Zn :=

Yn
ξn(1− ξn)

. (4)

With E denoting expectation under P, suppose that E[ζ1] = 0 and Var[ζ1] > 0 (so our
environment is truly random). In order to formulate our results, we introduce some more
notation. Set

λ := E[Z1], (5)
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and also let

s2 := Var[ξ1], σ2 := Var[Y1]. (6)

Under our boundedness conditions on ξ1 and Y1, we have s2 <∞ and σ2 <∞, and under
condition (2) we have, P-a.s.,

−∞ <
−1

δ2
≤ Z1 ≤

1

δ2
<∞.

This model was introduced in [21] in somewhat more generality, and criteria for tran-
sience, recurrence and ergodicity given (see Theorems 6, 7 of [21]). In this case, the
random environment described in (3) corresponds to a perturbation of Sinai’s regime, in
the sense that, in the limit as n → ∞, we have E[log(pn/qn)] → 0. Despite this, the
behaviour of this model may be strikingly different to that of Sinai’s RWRE (as demon-
strated by our results below and also those in [21]), and depends on the sign of λ as defined
at (5) (the average direction of the perturbation), and α (the size of the perturbation).

For the following results, with the definitions at (4) and (6), we take s2 > 0, E[ζ1] = 0,
and σ2 ≥ 0 (so, for example, we permit the case P[Y1 = b] = 1 for some b ∈ [−1, 1], i.e. a
non-random perturbation of Sinai’s RWRE). Of separate interest are the cases λ = 0 and
λ 6= 0 (where λ is given by (5)). The case of most interest to us here is λ 6= 0, for which
the perturbation is on average either towards 0 (λ > 0) or away from 0 (λ < 0); this
includes the case of a non-random perturbation of Sinai’s RWRE. It was shown in [21]
that the critical size of the perturbation is α = 1/2: for α < 1/2 the perturbation is large
enough to disturb the null-recurrent behaviour; for α ≥ 1/2 it is too small. By Theorem
6 of [21], we have that if λ < 0 and α < 1/2 then ηt(ω) is transient for a.e. ω; if α ≥ 1/2
and λ 6= 0 then ηt(ω) is null-recurrent for a.e. ω; if λ > 0 and α < 1/2 then ηt(ω) is
ergodic for a.e. ω.

We obtain logarithmic speeds for the λ 6= 0 case, for the null-recurrent (Theorem
2), transient (Theorem 3), and ergodic (Theorem 5) regimes. In the case λ = 0, the
critical exponent for α of 1/2 is decreased, depending on certain higher order analogues
of λ (see the remark after Theorem 7 of [21]). Here, of the λ = 0 cases, we will only

be concerned (see Theorem 4, below) with the special case where Y1/ξ1
d
= −Y1/(1 − ξ1),

for which λ = 0 and ηt(ω) is null-recurrent for a.e. ω for any α > 0 (see [21], Theorem

5). (Here and subsequently
d
= stands for equality in distribution.) This case is of interest

because, despite the presence of a (potentially strong) perturbation, the random walk
remains null-recurrent; we show it has logarithmic speed.

Our first result is Theorem 2 below, which deals with the λ 6= 0, α ≥ 1/2 case, for
which ηt(ω) is null-recurrent for a.e. ω (see above). Recall the definitions of λ, s2 and σ2

from (5) and (6).

Theorem 2 Suppose E[ζ1] = 0, s2 ∈ (0,∞), λ 6= 0 and σ2 ∈ [0,∞).

(i) Suppose α > 1/2. Then, for a.e. ω, for any ε > 0 we have, a.s.,

0 ≤ ηt(ω)

(log t)2
< (log log t)2+ε, (7)

for all but finitely many t.
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(ii) Suppose α = 1/2. Then, for a.e. ω, for any ε > 0 we have, a.s.,

0 ≤ ηt(ω)

(log t)2
< (log log t)4+ε, (8)

for all but finitely many t.

(iii) On the other hand, for α ≥ 1/2, for a.e. ω, for any ε > 0 we have, a.s.,

ηt(ω)

(log t)2
> (log log log t)−1−ε, (9)

for infinitely many t.

Our next result deals with the transient case when λ < 0 and α ∈ (0, 1/2), and gives
a reasonably tight envelope which the random walk leaves only finitely often. Although
the random walk is transient, it is very slow: we have a striking example of logarithmic
transience.

Theorem 3 Suppose E[ζ1] = 0, s2 ∈ (0,∞), λ < 0, σ2 ∈ [0,∞), and α ∈ (0, 1/2). For
a.e. ω, for any ε > 0, we have, a.s.,

(log log t)−(1/α)−ε <
ηt(ω)

(log t)1/α
< (log log t)(2/α)+ε, (10)

for all but finitely many t.

A case of secondary interest is that in which Y1/ξ1
d
= −Y1/(1 − ξ1). Here λ = 0, and

further, ηt(ω) is null-recurrent for a.e. ω, for any α > 0 (see Theorem 5 of [21]). Our next
result, Theorem 4 below, deals with this case.

The condition Y1/ξ1
d
= −Y1/(1 − ξ1) ensures that although the perturbation may be

strong, (roughly speaking) it balances out overall with equal strength to the left and to
the right. This intuition is supported by the fact that the random walk remains null-
recurrent. Also, included is the case P[Y1 = 0] = 1 and σ2 = 0, i.e. Sinai’s regime. Thus,
for our purposes, there is no distinction between the behaviour of the RWRE perturbed

from Sinai’s regime under condition Y1/ξ1
d
= −Y1/(1−ξ1) and that of the RWRE in Sinai’s

regime itself.

Theorem 4 Suppose E[ζ1] = 0, s2 ∈ (0,∞), Y1/ξ1
d
= −Y1/(1 − ξ1), σ2 ∈ [0,∞), and

α > 0.

(i) For a.e. ω, for any ε > 0 we have that, a.s.,

0 ≤ ηt(ω)

(log t)2
≤ (log log t)2+ε,

for all but finitely many t.

(ii) On the other hand, for a.e. ω, for any ε > 0 we have that, a.s.,

ηt(ω)

(log t)2
≥ (log log log t)−1−ε,

for infinitely many t.
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Remarks. (a) In the case of Sinai’s regime (P[Y1 = 0] = 1, σ2 = 0), Theorem 4(i) gives
similar bounds to [4, 1], but by comparison to Theorem 1 (due to Hu and Shi [14]), none
of the bounds in Theorem 4 is particularly sharp.

(b) In the null-recurrent regimes λ 6= 0, α ≥ 1/2 (Theorem 2) and Y1/ξ1
d
= −Y1/(1− ξ1)

(Theorem 4) we see that the position of the random walk is essentially of order (log t)2,
as in Sinai’s regime (which is included in Theorem 4). Thus provided we have null-
recurrence we have the same speed. On the other hand, in the transient case λ < 0,
α < 1/2 (Theorem 3), the 1/α exponent in the speed of transience is in (2,∞). Thus for
α increasingly small (i.e. a stronger perturbation), the speed increases (but is still ‘slow’,
i.e. logarithmic).

In the ergodic situations, in addition to our results on the speed of the random walk,
in the present paper we also give results on the rate of decay of the stationary distribu-
tion (πn), n ∈ Z+, of the Markov chain ηt(ω). Some analogous results for non-random
environments are given in [20]. Theorems 5 and 6 below deal with the ergodic case when
λ > 0 and α ∈ (0, 1/2).

Theorem 5 Suppose E[ζ1] = 0, s2 ∈ (0,∞), λ > 0, σ2 ∈ [0,∞), and α ∈ (0, 1/2). For
a.e. ω, for any ε > 0, a.s.,

ηt(ω) ≤ (1 + ε)

(
1− α
λ

)1/(1−α)

(log t)1/(1−α),

for all but finitely many t, and

ηt(ω) ≥ (1− ε)
(

1− α
λ

)1/(1−α)

(log t)1/(1−α),

for infinitely many t.

For α ∈ (0, 1/2), 1/(1− α) ∈ (1, 2): this is ‘slower’ than Sinai’s regime.

Theorem 6 Suppose E[ζ1] = 0, s2 ∈ (0,∞), λ > 0, σ2 ∈ [0,∞), and α ∈ (0, 1/2). For
a.e. ω, as n→∞

πn = exp

(
−
(

λ

1− α

)
n1−α[1 + o(1)]

)
. (11)

2.2 Simple random walk with random perturbation

Our second model again fits into the framework of (3) above, but we now take P[ξ1 =
1/2] = 1 and σ2 := Var[Y1] > 0. That is, we have a random perturbation of the symmetric
simple random walk (SRW). In this case, from (3), we have p0 = q0 = 1/2 and for n ∈ N

pn :=


1
2

+ Ynn
−α if (δ/2) ≤ 1

2
+ Ynn

−α ≤ 1− (δ/2)
δ/2 if 1

2
+ Ynn

−α < (δ/2)
1− (δ/2) if 1

2
+ Ynn

−α > 1− (δ/2)

qn := 1− pn. (12)
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Since the Yn are bounded, we have that there exists n0 ∈ N such that for a.e. ω we have
(δ/2) < 1

2
+ Ynn

−α < 1 − (δ/2) for all n ≥ n0. Thus, for a.e. ω, (12) implies that for all
n ≥ n0

pn =
1

2
+ Ynn

−α, qn =
1

2
− Ynn−α, (n ≥ n0). (13)

The conditions on the variables in (12) ensure that, for a.e. ω, (δ/2) ≤ pn ≤ 1 − (δ/2)
for all n so that for pn and qn are bounded strictly away from 0 and 1. We see that, for
a.e. ω, (pn, qn) → (1/2, 1/2) as n → ∞. Thus in the limit n → ∞, we coincide with the
symmetric SRW on Z+.

Here we do not study the case Var[Y1] = σ2 = 0, in which we have a non-random
perturbation of the SRW. This is an example of the so-called Lamperti problem after [18]
(see also [11]); for recurrence/transience criteria see [18, 19] and Theorem 2 of [21]. From
now on we assume Var[Y1] = σ2 > 0.

The transience and recurrence properties of the model given by (12) were analysed
in [21]. From Theorem 3(iv) of [21], we have that in this case if E[Y1] < 0 and α < 1
then ηt(ω) is transient for a.e. ω; if α > 1 and E[Y1] 6= 0 then ηt(ω) is null-recurrent for
a.e. ω; if E[Y1] > 0 and α < 1 then ηt(ω) is ergodic for a.e. ω. Thus, in contrast to the
perturbation of the random environment (as in Section 2.1), the critical exponent in this
case is α = 1.

When E[Y1] = 0, recurrence/transience properties depend on the higher moments of Y1

(see the remark after Theorem 3 of [21]). Of interest to us in the present paper is the case

in which the distribution of Y1 is symmetric, that is Y1
d
= −Y1 (and E[Y1] = 0). In this

case (see Theorem 3(iii) of [21]) ηt(ω) is null-recurrent for a.e. ω, for any α > 0. In this
case we obtain our logarithmic behaviour (see Theorem 7), in the domain α ∈ (0, 1/2).
We also obtain logarithmic bounds in the ergodic case mentioned above (see Theorem 8).

Theorem 7 Suppose P[ξ1 = 1/2] = 1, Y1
d
= −Y1, σ2 ∈ (0,∞), α ∈ (0, 1/2).

(i) For a.e. ω, for any ε > 0, a.s.,

0 ≤ ηt(ω)

(log t)2/(1−2α)
≤ (log log t)(2/(1−2α))+ε, (14)

for all but finitely many t.

(ii) On the other hand, for a.e. ω, for any ε > 0, a.s.,

ηt(ω)

(log t)2/(1−2α)
≥ (log log log t)−(1/(1−2α))−ε, (15)

for infinitely many t.

Remark. Note that for α ∈ (0, 1/2), 2/(1 − 2α) is in (2,∞). In the limit α ↓ 0, we
approach Sinai’s regime in the sense that, for fixed ω and each n, (pn, qn)→ (1

2
+Yn,

1
2
−Yn)

where

E
[
log

(
(1/2) + Yn
(1/2)− Yn

)]
= E[log((1/2) + Yn)]− E[log((1/2)− Yn)] = 0

8



when Y1
d
= −Y1. Thus it is not surprising that in the limit α ↓ 0, Theorem 7 approaches

Theorem 4 (which includes Sinai’s regime).
Theorems 8 and 9 below deal with the ergodic case when E[Y1] > 0 and α ∈ (0, 1).

Note that when α ∈ (0, 1), 1/(1− α) ∈ (1,∞).

Theorem 8 Suppose P[ξ1 = 1/2] = 1, E[Y1] > 0, σ2 ∈ (0,∞), and α ∈ (0, 1). For a.e. ω,
for any ε > 0, a.s.,

ηt(ω) ≤ (1 + ε)

(
1− α
4E[Y1]

)1/(1−α)

(log t)1/(1−α),

for all but finitely many t, and

ηt(ω) ≥ (1− ε)
(

1− α
4E[Y1]

)1/(1−α)

(log t)1/(1−α),

for infinitely many t.

The next result gives the rate of decay of the stationary distribution (πn): as in
Theorem 6, the decay is sub-exponential.

Theorem 9 Suppose P[ξ1 = 1/2] = 1, E[Y1] > 0, σ2 ∈ (0,∞), and α ∈ (0, 1). For a.e. ω,
as n→∞

πn = exp

(
−
(

4E[Y1]

1− α

)
n1−α[1 + o(1)]

)
. (16)

2.3 Further remarks and open problems

Our results give an indication of the ‘almost sure’ behaviour of ηt(ω), and there is scope for
tightening our bounds. Also of interest is the so-called annealed behaviour of the RWRE
(averaged over all environments). Sinai’s result [27] for the random walk in i.i.d. random
environment on Z with E[log(p1/q1)] = 0 showed (roughly speaking) that ηt(ω) divided
by (log t)2 converges in distribution to some random variable as t → ∞. The result is
stated in terms of the annealed probability measure Q given by

Q[·] =

∫
Ω

P [·]dP[ω].

Golosov [8] showed that for the RWRE on Z+ in Sinai’s regime

Q
[
ηt(ω)

(log t)2
≤ u

]
−→ F (u), u ∈ R,

as t → ∞, where F is a known distribution function. See also [9, 10, 15, 2] for related
results. The annealed behaviour of our models is also of interest. In particular, under the
conditions of Theorem 3 do we have (analogously to the results of Sinai-Golosov [27, 8])
that as t→∞

Q
[

ηt(ω)

(log t)1/α
≤ u

]
−→ G(u), u ∈ R,

9



for some G? We do not address this question in the present paper.
One can obtain Lp analogues of our results, with the methods used here (compare

Theorem 3.2 of [1]). For example, under the conditions of Theorem 2, analogously to (7),
for any p ≥ 1, for any ε > 0, for a.e. ω, as t→∞

ηt(ω)

(log t)2+ε
→ 0, in Lp.

The methods of the present paper are well suited to logarithmic speeds, since they are
based on an analysis of the expected hitting times of the random walk; some standard esti-
mates using the submartingale property, Markov’s inequality and the (first) Borel-Cantelli
lemma lead to some rather sharp results, since these expected times are exponentially
large. Of interest would be results for the cases of the SRW with random perturbation

that are not covered by the theorems of Section 2.2. For example, if Y1
d
= −Y1 but

α > 1/2, we expect SRW-like behaviour. On the other hand, if E[Y1] 6= 0, we suspect that
ηt(ω) will behave in a similar way to the Lamperti problem mentioned above: roughly
speaking, we expect SRW-like behaviour for α > 1, while in the transient regime (α < 1
and E[Y1] < 0) we have ηt(ω) ∼ t1/(1+α). Another open problem is the behaviour of this
model when α = 1 (this case was not covered in [21]). We hope to address some of these
issues in future work.

3 Preliminaries

Before we prove our main results in Section 4, we give some preparatory results. First,
in Section 3.1, we present some technical lemmas concerning the behaviour of sums of
independent random variables; some are well-known results, others we prove. Then, in
Section 3.2, we give the main apparatus of our proofs, based on some hitting time results.

3.1 Some strong theorems for sums of independent random vari-
ables

The following result is due to Sakhanenko [23, 24, 25], and is contained in Theorem A*
of the more readily obtainable paper by Shao [26].

Lemma 1 Let X1, X2, . . . be independent random variables with E[Xi] = 0, Var[Xi] =
σ2
i ∈ (0,∞) for i ∈ N. Suppose that the Xi are uniformly bounded, i.e., for some B ∈

(0,∞), P [|Xi| > B] = 0 for all i. For n ∈ N, set

s2
n :=

n∑
i=1

σ2
i .

Then, there exists (possibly on an enlarged probability space) a sequence of independent
normal random variables (W1, . . . ,Wn) with E[Wi] = 0, Var[Wi] = σ2

i for 1 ≤ i ≤ n such
that a.s., ∣∣∣∣∣

n∑
i=1

Xi −
n∑
i=1

Wi

∣∣∣∣∣ ≤ 1

A
log(s2

n),

for all but finitely many n, where A ∈ (0,∞) is a constant.
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We will need a form of the Law of the Iterated Logarithm. The following result is a
consequence of Theorem 7 of [7].

Lemma 2 Let X1, X2, . . . be independent, uniformly bounded random variables with E[Xi] =
0, Var[X2

i ] = σ2
i ∈ (0,∞) for i ∈ N. For n ∈ N, set s2

n :=
∑n

i=1 σ
2
i . Suppose that sn →∞

as n→∞. Then, for any ε > 0, a.s.,∣∣∣∣∣
n∑
i=1

Xi

∣∣∣∣∣ ≤ sn((2 + ε) log log(s2
n))1/2,

for all but finitely many n.

We will also need the following ‘inverse iterated logarithm law’ due to Hirsch (Theorem
2 of [12]; see also Theorem 3.1 of [3]).

Lemma 3 Let X1, X2, . . . be i.i.d., uniformly bounded random variables with E[X1] = 0,
Var[X1] ∈ (0,∞). For x ≥ 0, let a(x) > 0 be a nonincreasing function such that x1/2a(x)
is eventually increasing and

∞∑
n=1

a(n)

n
<∞. (17)

Then, a.s.,

max
1≤i≤n

i∑
j=1

Xj ≥ n1/2a(n),

for all but finitely many n.

We will also need the following extension of part of Hirsch’s result to independent
non-identically distributed random variables.

Lemma 4 Let X1, X2, . . . be independent, uniformly bounded random variables with E[Xi] =
0, Var[Xi] = σ2

i for i ∈ N, where 0 < σ2
i < M <∞ for all i. Set s2

n :=
∑n

i=1 σ
2
i for n ∈ N.

Suppose that sn → ∞ as n → ∞. For x ≥ 0, let a(x) > 0 be a nonincreasing function
such that x1/2a(x) is eventually increasing, (17) holds, and

lim
n→∞

log n

n1/2a(n)
= 0. (18)

Then, for some constant C ∈ (0,∞), a.s.,

max
1≤i≤n

i∑
j=1

Xj ≥ Csna(s2
n), (19)

for all but finitely many n.
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Proof. By Lemma 1, we can redefine the Xi, i ∈ N on a richer probability space along
with a sequence of independent normal random variables Wi, i ∈ N with E[Wi] = 0 and
Var[Wi] = σ2

i , such that, a.s.,∣∣∣∣∣
i∑

j=1

Xj −
i∑

j=1

Wj

∣∣∣∣∣ ≤ A−1 log(s2
i ) ≤ C log i,

for all but finitely many i, for some A,C ∈ (0,∞). Thus, a.s.,∣∣∣∣∣max
1≤i≤n

i∑
j=1

Xj − max
1≤i≤n

i∑
j=1

Wj

∣∣∣∣∣ ≤ max
1≤i≤n

∣∣∣∣∣
i∑

j=1

Xj −
i∑

j=1

Wj

∣∣∣∣∣ ≤ C log n, (20)

for all but finitely many n. For n ∈ N, set

h(n) := min{m ∈ N : s2
m ≥ n}. (21)

There exists a standard Brownian motion (B(n);n ≥ 0) and a sequence of independent
normal random variables δn ∼ N (0, s2

h(n)− n), n ∈ N, independent of (B(n);n ≥ 0), such
that

B(n) + δn =

h(n)∑
i=1

Wi,

for each n ∈ N. Now,

max
1≤i≤h(n)

i∑
j=1

Wj ≥ max
1≤i≤n

h(i)∑
j=1

Wj = max
1≤i≤n

(B(i) + δi) .

Hence

max
1≤i≤h(n)

i∑
j=1

Wj ≥ max
1≤i≤n

B(i)− max
1≤i≤n

δi. (22)

Since Var(δi) = s2
h(i) − i ≤ σ2

h(i) < M <∞, and δi, i ∈ {1, . . . , n} are independent normal
random variables, we have that, a.s.,

max
1≤i≤n

δi ≤ log n, (23)

for all but finitely many n (this follows from standard tail bounds on the normal distri-
bution (see e.g. [5], p. 9) and the Borel-Cantelli lemma). Suppose that a(·) satisfies the
conditions of this lemma. Now, for a sequence Y1, Y2, . . . of i.i.d. normal random variables
with E[Y1] = 0 and Var[Y1] = 1, we have by Lemma 3 that a.s.,

max
1≤i≤n

B(i) = max
1≤i≤n

i∑
j=1

Yj ≥ n1/2a(n), (24)

for all but finitely many n. So from (22), (23), (24) and condition (18), a.s.,

max
1≤i≤h(n)

i∑
j=1

Wj ≥ n1/2a(n)− log n ≥ Cn1/2a(n), (25)

12



for all but finitely many n and some C ∈ (0,∞). Since σ2
i > 0 for all i, we have from (21)

that h(s2
n) = n; thus by (20) and (25) we have that, a.s.,

max
1≤i≤n

i∑
j=1

Xj ≥ max
1≤i≤n

i∑
j=1

Wj − C log n ≥ C ′(s2
n)1/2a(s2

n)− C log n,

for some C,C ′ ∈ (0,∞), for all but finitely many n. Then by the conditions on s2
n and

a(·), (19) follows. �

The next two lemmas will be needed for some more delicate estimates (e.g. in the proof
of Theorem 3) where we need to deal with certain moving sums. The following lemma is
a corollary to a result of Hirsch [12].

Lemma 5 Let X1, X2, . . . be independent, uniformly bounded random variables with E[Xi] =
0, Var[Xi] = σ2 ∈ (0,∞) for i ∈ N. For x ≥ 1, let b(x) be a nondecreasing, integer-valued
function such that for some β > 0 and x0 ∈ (0,∞), xβ ≤ b(x) ≤ x for all x ≥ x0. Then
for any ε > 0, a.s.,

max
1≤i≤n

max
1≤j≤b(i)

i∑
k=i−j+1

Xk ≥ (b(n/2))1/2(log n)−1−ε,

for all but finitely many n.

Proof. For fixed i, note that

max
1≤j≤b(i)

i∑
k=i−j+1

Xk
d
= max

1≤j≤b(i)

j∑
k=1

Yk,

where Y1, Y2, . . . are independent random variables with Yk
d
= Xi+1−k for each k. Fix

ε > 0. Let Ei denote the event

Ei :=

{
max

1≤j≤b(i)

i∑
k=i−j+1

Xk ≤ (b(i))1/2(log b(i))−1−ε

}
.

Then Corollary 1 of Hirsch [12] implies that there are absolute constants C,C ′ ∈ (0,∞)
such that for all i ≥ x0,

P [Ei] ≤ C(log b(i))−1−ε ≤ C ′(log i)−1−ε,

since b(i) ≥ iβ. Consider the subsequence i = 2m for m = 1, 2, . . .. Then

∞∑
m=1

P [E2m ] ≤ C

∞∑
m=1

m−1−ε <∞.

Hence by the (first) Borel-Cantelli lemma, a.s., there is a finite m0 (with 2m0 ≥ x0) such
that, for all i = 2m with m ≥ m0,

max
1≤j≤b(i)

i∑
k=i−j+1

Xk ≥ (b(i))1/2(log b(i))−1−ε ≥ (b(i))1/2(log i)−1−ε,

13



since b(i) ≤ i. Each n ≥ 2 satisfies n ∈ [2m, 2m+1) for some m ∈ N; then, a.s.,

max
1≤i≤n

max
1≤j≤b(i)

i∑
k=i−j+1

Xk ≥ max
1≤i≤2m

max
1≤j≤b(i)

i∑
k=i−j+1

Xk

≥ max
1≤j≤b(2m)

2m∑
k=2m−j+1

Xk ≥ (b(2m))1/2(log(2m))−1−ε,

provided m ≥ m0. Hence, since n ≥ 2m > n/2, a.s.,

max
1≤i≤n

max
1≤j≤b(i)

i∑
k=i−j+1

Xk ≥ (b(n/2))1/2(log n)−1−ε,

for all n ≥ 2m0 . �

Lemma 6 Let X1, X2, . . . be independent, uniformly bounded random variables with E[Xi] =
0 for all i ∈ N. Then there exists C ∈ (0,∞) such that, a.s., for all but finitely many i∣∣∣∣∣

i∑
k=i−j+1

Xk

∣∣∣∣∣ ≤ Cj1/2(log i)1/2,

for all j = 1, 2, . . . , i.

Proof. For fixed i, Y i
j :=

∑i
k=i−j+1 Xk is a martingale over j = 1, 2, . . . , i, with uniformly

bounded increments. Hence the Azuma-Hoeffding inequality (see e.g. [13]) implies that
for some B ∈ (0,∞), for all j = 1, . . . , i, for t > 0,

P [|Y i
j | ≥ t] ≤ 2 exp(−B−1j−1t2).

Thus for a suitable C <∞, for j ≤ i, P [|Y i
j | ≥ Cj1/2(log i)1/2] ≤ i−3. Then

∞∑
i=1

i∑
j=1

P [|Y i
j | ≥ Cj1/2(log i)1/2] ≤

∞∑
i=1

i−2 <∞.

Hence the (first) Borel-Cantelli lemma implies that, a.s., there are only finitely many pairs
(i, j) (with j ≤ i) for which |Y i

j | ≥ Cj1/2(log i)1/2. �

3.2 Hitting times results

For the proofs of our main results, we will use the expected hitting times for the random
walk ηt(ω) as defined at (1). For the remainder of this section, we work in the quenched
setting (i.e. with fixed environment ω = (p0, p1, . . .) throughout). For 0 ≤ m < n, let τm,n
denote the time when ηt(ω) first hits n, starting from m. That is, with the convention
min ∅ = +∞,

τm,n := min{t ≥ 0 : ηt(ω) = n|η0(ω) = m}. (26)
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For our proofs in Section 4, we take η0(ω) = r = 0 for ease of exposition; the proofs easily
extend to general r ∈ Z+. For fixed ω, let T (0) := 0, and for n ∈ N let T (n) := E[τ0,n].
For i = 0, 1, 2, . . ., write ∆i := T (i+ 1)− T (i) = E[τi,i+1], so that ∆i is the expected time
taken for ηt(ω) to hit i+1, starting at i. Then standard arguments yield T (n) =

∑n−1
i=0 ∆i

with ∆0 = 1/q0 and for i ≥ 1

∆i = 1 + pi(∆i−1 + ∆i).

We then obtain the following classical result.

Lemma 7 Let ω be fixed. For n ∈ N, we have that T (n) =
∑n−1

i=0 ∆i, and for i ≥ 0, ∆i

is given (with the convention that an empty product is 1) by

∆i =
i∑

j=0

q−1
i−j

i∏
k=i−j+1

pk
qk

=
1

qi
+

pi
qiqi−1

+ · · ·+ pipi−1 · · · p1

qiqi−1 · · · q1q0

. (27)

The following fact will be very useful. That is, for a fixed environment, T (ηt(ω)) is a
submartingale with respect to the natural filtration (for a closely related supermartingale,
see [1], equation (6)). In particular, we have the following.

Lemma 8 For fixed ω, any t ∈ Z+ and any n ∈ Z+,

E[T (ηt+1(ω))− T (ηt(ω))|ηt(ω) = n] = 1. (28)

Proof. For n ≥ 1, we have

E[T (ηt+1(ω))− T (ηt(ω))|ηt(ω) = n]

= pn(T (n− 1)− T (n)) + qn(T (n+ 1)− T (n))

= qn∆n − pn∆n−1 = 1,

by (27). Also,
E[T (ηt+1(ω))− T (ηt(ω))|ηt(ω) = 0] = q0T (1) = 1,

since T (1) = ∆0 = 1/q0. �

We can now state the result that will be our main tool in proving almost sure upper
and lower bounds for ηt(ω), using the expected hitting times T (n).

Lemma 9 For a given environment ω, suppose that there exist two nonnegative, increas-
ing, continuous functions g and h such that,

g(n) ≤ T (n) ≤ h(n),

for all n ∈ Z+. Then:

(i) For any ε > 0, a.s., for all but finitely many t,

ηt(ω) ≤ g−1((2t)1+ε). (29)

(ii) A.s., for infinitely many t,

(ηt(ω))2h(ηt(ω)) ≥ t. (30)
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Remark. In the transient case we want to do better (for Theorem 3) than part (ii) here,
to give a lower bound for ηt(ω) that holds all but finitely often. See the proof of Theorem
3 below.
Proof of Lemma 9. Throughout we work in fixed environment ω. First we prove part
(i). From (28), we have that for any t ∈ Z+

E[T (ηt+1(ω))− T (ηt(ω))] =
∞∑
n=0

P [ηt(ω) = n] = 1.

Then, given that η0(ω) = 0, for all t ∈ Z+ we have

E[T (ηt(ω))] = t. (31)

To prove (29), we modify the idea of the proof of Theorem 3.2 of [1]. Since T (ηt(ω)) is a
nonnegative submartingale (see Lemma 8), Doob’s submartingale inequality (see e.g. [29],
p. 137) implies that, for t > 0, for any ε > 0,

P

[
max
0≤s≤t

T (ηs(ω)) ≥ t1+ε

]
≤ t−1−εE[T (ηt(ω))] = t−ε, (32)

using (31). Also, given that T (n) ≥ g(n) for all n, we have, for t > 0,

P

[
max
0≤s≤t

T (ηs(ω)) ≥ t1+ε

]
≥ P

[
max
0≤s≤t

g(ηs(ω)) ≥ t1+ε

]
= P

[
g

(
max
0≤s≤t

ηs(ω)

)
≥ t1+ε

]
, (33)

since g is increasing. Hence from (32) and (33), for t > 0,

P

[
max
0≤s≤t

ηs(ω) ≥ g−1(t1+ε)

]
≤ t−ε.

Thus along the subsequence t = 2m for m = 0, 1, 2, . . ., the (first) Borel-Cantelli lemma
implies that, a.s., the event in the last display occurs only finitely often, and in particular
there exists m0 <∞ such that for all m ≥ m0

max
0≤s≤2m

ηs(ω) ≤ g−1((2m)1+ε).

Every t sufficiently large has 2m ≤ t < 2m+1 for some m ≥ m0; then, a.s.,

ηt(ω) ≤ max
0≤s≤t

ηs(ω) ≤ max
0≤s≤2m+1

ηs(ω) ≤ g−1((2m+1)1+ε),

for all but finitely many t. Now since 2m+1 ≤ 2t and g−1 is increasing, (29) follows.
Now we prove part (ii). Recall the definition of τ0,n at (26). By Markov’s inequality,

we have that for n ∈ N

P [τ0,n > n2T (n)] = P [τ0,n > n2E[τ0,n]] ≤ n−2.

Then, by the (first) Borel-Cantelli lemma, a.s., τ0,n > n2T (n) for only finitely many n.
Thus, given that T (n) ≤ h(n) for all n, we have that a.s., for all but finitely many n,
τ0,n ≤ n2h(n).
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Given ω, ηt(ω) is an irreducible Markov chain on Z+, hence lim supt→∞ ηt(ω) = +∞
a.s.. Thus a.s. there exists an infinite subsequence of N, t1, t2, t3, . . . (one can take, for
each i, ti = τ0,i, the time of the first visit of ηt to i), such that ηti(ω) → ∞ as i → ∞.
That is, a.s.,

ti ≤ ηti(ω)2h(ηti(ω)).

There are infinitely many such ti, and so we have (30). �

4 Proofs of main results

To prove our main results, we employ the machinery given in the previous section: we
obtain, via the results in Section 3.1, suitable functions g, h such that g(n) ≤ T (n) ≤ h(n)
(for a.e. ω), and then apply Lemma 9.

We consider T (n) as given in Lemma 7. Recalling the definition of ∆i at (27), we can
write (interpreting an empty sum as zero) for i ≥ 0

∆i =
i∑

j=0

q−1
i−j exp

i∑
k=i−j+1

log(pk/qk). (34)

The following result gives general bounds on T (n).

Lemma 10 For a fixed environment ω, for all n ≥ 1

T (n) ≥ exp max
1≤i≤n−1

i∑
k=1

log(pk/qk), (35)

and for some C ∈ (0,∞), for all n ≥ 1,

T (n) ≤ Cn2 exp

(
max

0≤i≤n−1

i∑
k=1

log(pk/qk) + max
0≤i≤n−1

i∑
k=1

(− log(pk/qk))

)
. (36)

Proof. Since a sum of nonnegative terms is bounded below by its largest term,

T (n) =
n−1∑
i=0

∆i ≥ max
1≤i≤n−1

∆i ≥ max
1≤i≤n−1

max
1≤j≤i

exp
i∑

k=i−j+1

log(pk/qk), (37)

using (34) and the fact that q−1
i−j ≥ 1. Now for i ∈ N

max
1≤j≤i

i∑
k=i−j+1

log(pk/qk) ≥
i∑

k=1

log(pk/qk), (38)

so that by (37) and (38),

T (n) ≥ max
1≤i≤n−1

exp max
1≤j≤i

i∑
k=i−j+1

log(pk/qk) ≥ max
1≤i≤n−1

exp
i∑

k=1

log(pk/qk),

and the lower bound in the lemma follows.
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For the upper bound, we have from (34) that

T (n) ≤ n max
0≤i≤n−1

∆i ≤ δ−1n(n+ 1) max
0≤i≤n−1

max
0≤j≤i

exp
i∑

k=i−j+1

log(pk/qk), (39)

since q−1
i−j ≤ δ−1 with δ as at (2). Now

max
0≤j≤i

i∑
k=i−j+1

log(pk/qk) =
i∑

k=1

log(pk/qk) + max
0≤j≤i

i−j∑
k=1

(− log(pk/qk))

=
i∑

k=1

log(pk/qk) + max
0≤j≤i

j∑
k=1

(− log(pk/qk)). (40)

Thus from (39) and (40), for C ∈ (0,∞) and all n ≥ 1

T (n) ≤ Cn2 exp

(
max

0≤i≤n−1

i∑
k=1

log(pk/qk) + max
0≤i≤n−1

max
0≤j≤i

j∑
k=1

(− log(pk/qk))

)
.

Then the upper bound in the lemma follows. �

We start with the proof of Theorem 7 for expository purposes. The proof of Theorem
7 will then serve as a prototype for subsequent proofs. As previously mentioned, we take
η0(ω) = 0 for the purposes of the proofs that follow (without loss of generality).

4.1 Proof of Theorem 7

For fixed ω, by Lemma 7, the expected hitting time T (n) is expressed in terms of
log(pn/qn). To prepare for the proof, we note that under the conditions of Theorem
7 pn and qn have the same distribution, so

E[log(pn/qn)] = E[log pn]− E[log qn] = 0. (41)

By (13), Taylor’s theorem and the boundedness of the Yn, for a.e. ω,

log pn = log(1/2) + log(1 + 2Ynn
−α)

= log(1/2) + 2Ynn
−α − 2Y 2

n n
−2α +O(n−3α),

for all n sufficiently large, and

log qn = log(1/2) + log(1− 2Ynn
−α)

= log(1/2)− 2Ynn
−α − 2Y 2

n n
−2α +O(n−3α),

so that

log(pn/qn) = log pn − log qn = 4Ynn
−α +O(n−3α). (42)

Lemma 11 below gives bounds for the expected hitting time T (n), and so prepares us
for the proof of Theorem 7 via an application of Lemma 9.
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Lemma 11 Suppose P[ξ1 = 1/2] = 1, Y1
d
= −Y1, σ2 ∈ (0,∞), and α ∈ (0, 1/2). Then

for a.e. ω, for any ε > 0, for all but finitely many n,

exp(n(1−2α)/2(log n)−1(log log n)−1−ε) ≤ T (n)

≤ exp(n(1−2α)/2(log log n)(1/2)+ε). (43)

Proof. From (41), E[log(pk/qk)] = 0 and from (42) Var[log(pk/qk)] = 16σ2k−2α+o(k−2α).
Hence, for α ∈ (0, 1/2), for all i,

C1i
1−2α ≤ Var

i∑
k=1

log(pk/qk) ≤ C2i
1−2α, (44)

for some C1, C2 ∈ (0,∞) with C1 < C2.
Now we derive the lower bound in (43). By Lemma 4 and (44), for an appropriate

choice of a(·) satisfying the conditions of Lemma 4, for a.e. ω, a.s.,

max
1≤i≤n−1

i∑
k=1

log(pk/qk) ≥ Cn(1−2α)/2a(n1−2α), (45)

for all but finitely many n. For ε > 0, we take a(n) = (log n)−1(log log n)−1−ε; then a(·)
satisfies the conditions of Lemma 4. Then (35) and (45) imply the lower bound in (43).

Now we prove the upper bound in (43), using (36). By Lemma 2 with (44) we have
that for a.e. ω, a.s., for all but finitely many n,

max
0≤i≤n−1

i∑
k=1

log(pk/qk) < Cn(1−2α)/2(log log n)1/2,

max
0≤i≤n−1

i∑
k=1

(− log(pk/qk)) < Cn(1−2α)/2(log log n)1/2,

for some C ∈ (0,∞). Thus from (36) we obtain the upper bound in (43). �

Proof of Theorem. First we prove part (i) of Theorem 7. From the lower bound in
(43), we have that, for a.e. ω, there exists a finite positive constant C (depending on ω)
such that, for any ε > 0, for all n sufficiently large,

T (n) ≥ g(n) := C exp
(
n(1−2α)/2(log n)−1(log log n)−1−ε) . (46)

So by (29), we have that, for a.e. ω, for any ε > 0, a.s.,

ηt(ω) ≤ g−1(4t2) ≤ C((log t)(log log t)1+ε)2/(1−2α),

for all but finitely many t, which gives (14). Now we prove part (ii). From the upper
bound in (43), we have that, for any ε > 0,

T (n) ≤ h(n) := C exp(n(1−2α)/2(log log n)(1/2)+ε),

so that, for all n sufficiently large,

h−1(n) ≥ C(log n)2/(1−2α)(log log log n)−(1+3ε)/(1−2α). (47)

From (30) we have that a.s., for infinitely many t,

h(ηt(ω)) ≥ t(ηt(ω))−2 ≥ Ct(log t)−5/(1−2α),

by (14). Thus a.s., for infinitely many t, ηt(ω) ≥ h−1(Ct(log t)−5/(1−2α)), which with (47)
yields (15). �
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4.2 Proofs of Theorems 2 and 3

To prove Theorems 2 and 3, we proceed along the same lines as the proof of Theorem 7
in Section 4.1, and apply Lemma 9. Theorem 3 (the transient case) requires some extra
work, both to obtain suitable bounds for T (n) and to prove that the lower bound on the
random walk holds all but finitely often.

Suppose E[ζ1] = 0, s2 ∈ (0,∞), σ2 ∈ [0,∞). Then for a.e. ω

log

(
pn
qn

)
= ζn + log

(
1 +

Yn
ξn
n−α

)
− log

(
1− Yn

1− ξn
n−α

)
, (48)

for all n ≥ n0 for a finite absolute constant n0, where ζi, i ∈ N, as defined at (4) are
i.i.d. with E[ζ1] = 0 and Var[ζ1] ∈ (0,∞). It follows from (48) and Taylor’s theorem that,
for a.e. ω, for all n sufficiently large,

log(pn/qn) = ζn + Znn
−α +O(n−2α), (49)

where Zi, i ∈ N, are i.i.d. with E[Z1] = λ (see (4) and (5)). Then by (49)

E[log(pk/qk)] = λk−α +O(k−2α),Var[log(pk/qk)] = Var[ζ1] +O(k−α). (50)

Lemma 12 Suppose E[ζ1] = 0, s2 ∈ (0,∞), σ2 ∈ [0,∞), λ < 0, and α ∈ (0, 1/2). For
a.e. ω and any ε > 0, for all but finitely many n,

exp(nα(log n)−2−ε) ≤ T (n) ≤ exp(nα(log n)1+ε). (51)

Proof. First we prove the upper bound in (51). Since λ < 0, we have from (50) that

E
i∑

k=i−j+1

log(pk/qk) ≤ −C(i1−α − (i− j)1−α), (52)

for some C ∈ (0,∞). Taylor’s theorem implies that for α ∈ (0, 1)

i1−α − (i− j)1−α = Cji−α(1− θ(j/i))−α, (53)

for some C ∈ (0,∞) and θ ∈ (0, 1). Thus it follows from (52) and (53) that for all i ∈ N,
and all j = 1, 2, . . . , i

E
i∑

k=i−j+1

log(pk/qk) ≤ −Cji−α, (54)

for some C ∈ (0,∞). By Lemma 6 we have that, for some C ∈ (0,∞), for a.e. ω, all but
finitely many i, and all j = 1, 2, . . . , i,

i∑
k=i−j+1

(log(pk/qk)− E[log(pk/qk)]) ≤ Cj1/2(log i)1/2. (55)

Suppose ε > 0. Then from (55) with (54), for a.e. ω, for j ≥ di2α(log i)1+εe
i∑

k=i−j+1

log(pk/qk) ≤ −Cji−α + C ′j1/2(log i)1/2 ≤ −C ′′ji−α, (56)
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and, for j ≤ di2α(log i)1+εe

i∑
k=i−j+1

log(pk/qk) ≤ Cj1/2(log i)1/2, (57)

where each inequality holds for all but finitely many i. So from (34), (56) and (57) we
obtain, for a.e. ω, for any ε > 0, for all but finitely many i,

∆i ≤
di2α(log i)1+εe∑

j=0

exp(Cj1/2(log i)1/2) +
i∑

j=di2α(log i)1+εe

exp(−C ′ji−α)

≤ exp(C ′′iα(log i)1+ε),

for C ′′ ∈ (0,∞). Then the upper bound for T (n) in (51) follows.
We now prove the lower bound in (51). For ε > 0 set kε(1) := 1 and for i > 1 define

kε(i) := bi2α(log i)−2−εc. (58)

Then, for any α ∈ (0, 1/2] and all n sufficiently large, from (37),

T (n) ≥ max
1≤i≤n−1

max
1≤j≤kε(i)

exp
i∑

k=i−j+1

log(pk/qk). (59)

Then (48) and Taylor’s theorem imply that there is a constant C ∈ (0,∞) such that, for
all k, log(pk/qk) = ζk +Wkk

−α, where |Wk| < C. Thus for i ∈ N and j = 1, 2, . . . , i,

i∑
k=i−j+1

log(pk/qk) ≥
i∑

k=i−j+1

ζk − C
i∑

k=i−j+1

k−α ≥
i∑

k=i−j+1

ζk − C ′ji−α,

again using Taylor’s theorem (cf (53)). Hence by (59)

T (n) ≥ exp

(
max

1≤i≤n−1
max

1≤j≤kε(i)

i∑
k=i−j+1

ζk − Ckε(n)n−α

)
. (60)

By Lemma 5, we have that for any ε > 0, for a.e. ω,

max
1≤i≤n−1

max
1≤j≤kε(i)

i∑
k=i−j+1

ζk ≥ (kε(n/2))1/2(log n)−1−(ε/4) ≥ Cnα(log n)−2−(3ε/4),

for all but finitely many n, while kε(n)n−α ≤ nα(log n)−2−ε. Hence (60) implies the lower
bound in (51). �

Lemma 13 Suppose E[ζ1] = 0, s2 ∈ (0,∞), σ2 ∈ [0,∞), and λ 6= 0.

(i) Suppose α > 1/2. For a.e. ω and any ε > 0, for all but finitely many n,

exp(n1/2(log n)−1−ε) ≤ T (n) ≤ exp(n1/2(log log n)(1/2)+ε). (61)
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(ii) Suppose α = 1/2. For a.e. ω and any ε > 0, for all but finitely many n,

exp(n1/2(log n)−2−ε) ≤ T (n) ≤ exp(n1/2(log log n)(1/2)+ε). (62)

Proof. To prove the upper bounds in (61) and (62), we apply (36). For λ 6= 0, α ≥ 1/2
we have from (50) that

i∑
k=1

E[log(pk/qk)] = O(max{i1−α, log i}),

so that for some C ∈ (0,∞) and all n

max
0≤i≤n

i∑
k=1

log(pk/qk) ≤ max
0≤i≤n

i∑
k=1

(log(pk/qk)− E[log(pk/qk)]) + C max{n1−α, log n}; (63)

similarly for the second maximum in (36). By Lemma 2 and (50), for a.e. ω,

max
0≤i≤n

i∑
k=1

(log(pk/qk)− E[log(pk/qk)]) ≤ Cn1/2(log log n)1/2,

for all but finitely many n, and since α ≥ 1/2, (63) then implies that for a.e. ω,

max
0≤i≤n

i∑
k=1

log(pk/qk) ≤ Cn1/2(log log n)1/2,

for all but finitely many n, and similarly for the second maximum in (36). Then (36)
gives the upper bounds in (61) and (62).

Now we prove the lower bounds in (61) and (62). In the case α > 1/2,

max
1≤i≤n−1

i∑
k=1

log(pk/qk) ≥ max
1≤i≤n−1

i∑
k=1

(log(pk/qk)− E[log(pk/qk)])− C max{n1−α, log n},

by a similar argument to (63). Lemma 4 implies that for any ε > 0, for a.e. ω,

max
1≤i≤n−1

i∑
k=1

(log(pk/qk)− E[log(pk/qk)]) ≥ n1/2(log n)−1−ε,

for all but finitely many n; then (35) implies the lower bound in (61). Finally, suppose
α = 1/2. Once more we define kε(i) by (58), and follow the argument for (60). This yields
the lower bound in (62). �

Proof of Theorem 3. For the upper bound in (10), the lower bound in (51) implies
that, for a.e. ω, for any ε > 0 there exists C ∈ (0,∞) such that

T (n) ≥ g(n) := C exp(nα(log n)−2−ε),

for all n sufficiently large. Then (29) gives, for a.e. ω, for any ε > 0, a.s.,

ηt(ω) ≤ g−1(4t2) ≤ C(log t)1/α(log log t)(2+2ε)/α,
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for all but finitely many t. Then the upper bound in (10) follows.
We now want to obtain the lower bound in (10). Recalling the proof of Lemma 9(ii),

we were able to show that, along a sequence of first hitting times for the random walk,
these times were not too large. This gave us a lower bound that was valid infinitely often.
In order to extend this technique to the transient case, and obtain a lower bound valid all
but finitely often, we show in addition that (roughly speaking), in the present case, the
time of the last visit of the random walk to a site is not too much greater than the first
hitting time.

For fixed ω, let an denote the probability that the random walk ηt(ω) hits n in finite
time, given that it starts at 2n. For n ≥ 1 define

Mn := 1 +
∞∑
j=1

j∏
k=1

pn+k

qn+k

= 1 +
∞∑
j=1

exp

j∑
k=1

log

(
pn+k

qn+k

)
. (64)

Standard hitting probability arguments yield a0 = 1, and for n ≥ 1, if Mn <∞,

an = M−1
n

∞∑
j=n

j∏
k=1

pn+k

qn+k

= M−1
n

∞∑
j=n

exp

j∑
k=1

log

(
pn+k

qn+k

)
. (65)

In the present case (λ < 0, α ∈ (0, 1/2)), (50) holds. Thus for n, j ∈ N

E
j∑

k=1

log(pn+k/qn+k) ≤ −C((n+ j)1−α − n1−α), (66)

for some C ∈ (0,∞). Here, by Taylor’s theorem, for α ∈ (0, 1),

(n+ j)1−α − n1−α = Cj(n+ θj)−α, (67)

for some C ∈ (0,∞), θ ∈ (0, 1). In particular, for j ≥ n, (66) and (67) imply

E
j∑

k=1

log(pn+k/qn+k) ≤ −Cj(j(1 + θ))−α ≤ −C ′j1−α, (68)

for C ′ ∈ (0,∞). Also, by the Azuma-Hoeffding inequality and an argument similar to
Lemma 6, we have that, for a.e. ω,

j∑
k=1

(log(pn+k/qn+k)− E[log(pn+k/qn+k)]) ≤ Cj1/2(log(jn))1/2,

for all but finitely many (n, j). Thus for all (n, j) we have that, for a.e. ω,

j∑
k=1

log(pn+k/qn+k) ≤ Cj1/2(log(jn))1/2, (69)

for some C ∈ (0,∞). However, we have from (68) that, for a.e. ω, there are constants
C,C ′, C ′′ ∈ (0,∞) such that, for all n ∈ N, and j ≥ n

j∑
k=1

log(pn+k/qn+k) ≤ −Cj1−α + C ′j1/2(log j)1/2 ≤ −C ′′j1−α, (70)
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since α ∈ (0, 1/2). Hence, for a.e. ω, from (64), (69), and (70), for n ∈ N,

Mn ≤
n∑
j=1

exp(Cj1/2(log(jn))1/2) +
∞∑
j=n

exp(−C ′j1−α)

≤ exp(C ′′n1/2(log n)1/2) <∞.

Further, since Mn ≥ 1 for all n, (65) and (70) imply, for a.e. ω, for all n ∈ N,

an ≤
∞∑
j=n

exp(−Cj1−α) ≤ exp(−C ′n1−α),

for some C ′ ∈ (0,∞). Thus, for a.e. ω,
∑

n an <∞.
The (first) Borel-Cantelli lemma then implies that, for a.e. ω, a.s., for only finitely

many sites n does ηt(ω) return to n after visiting 2n. Denoting by `n the time of the last
visit of ηt(ω) to n, we then have that `n ≤ τ0,2n a.s. for all but finitely many n. Suppose
T (n) ≤ h(n) for all n. Following the proof of Lemma 9(ii), we have that a.s., for all but
finitely many n, τ0,n ≤ n2h(n). Thus for a.e. ω, a.s.,

`n ≤ τ0,2n ≤ 4n2h(2n), (71)

for all n ≥ n0 for some finite n0 (depending on ω).
Moreover, since, for a.e. ω, ηt(ω) is transient, we have that, for a.e. ω, a.s., ηt(ω) ≥ n0

for all t sufficiently large. Hence from (71), using the fact that `ηt(ω) ≥ t for all t, we have
that for a.e. ω, a.s., for all but finitely many t,

t ≤ `ηt(ω) ≤ 4ηt(ω)2h(2ηt(ω)).

Then, with the upper bound in (51), we obtain, for a.e. ω, for any ε > 0, a.s.,

t < exp(ηt(ω)α(log ηt(ω))1+ε),

for all but finitely many t. This implies the lower bound in (10). �

Proof of Theorem 2. We first prove part (i). Suppose α > 1/2. From the lower bound
on T (n) in (61), for a.e. ω, for any ε > 0,

T (n) ≥ g(n) := C exp(n1/2(log n)−1−ε),

for all n ∈ N. Then (29) implies the upper bound in (7). For part (ii), when α = 1/2, the
lower bound in (62) allows us, this time, to take g(n) := C exp(n1/2(log n)−2−ε). Then
(29) gives the upper bound in (8).

For part (iii) of the theorem, for α ≥ 1/2, the upper bound on T (n) in (61) and (62)
implies that for a.e. ω

T (n) ≤ h(n) := C exp(n1/2(log log n)(1/2)+ε),

for all but finitely many n; in particular h−1 satisfies the lower bound of (47) with α = 0.
Then (30) yields the lower bound in (9). �
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4.3 Proofs of Theorems 5 and 8

We now move on to the ergodic cases (Theorems 5 and 8). Again we start by bounding
T (n). First we deal with the ergodic case of the random perturbation of the simple
random walk.

Lemma 14 Suppose P[ξ1 = 1/2] = 1, E[Y1] > 0, σ2 ∈ (0,∞), and α ∈ (0, 1). Then for
a.e. ω, as n→∞

T (n) = exp

(
4E[Y1]

1− α
n1−α[1 + o(1)]

)
.

Proof. In this case, (42) holds. We apply a variation of the argument for Lemma 6. We
have that for each i

Y i
j :=

i∑
k=i−j+1

(log(pk/qk)− E[log(pk/qk)])

is a martingale over j = 1, 2, . . . , i, with increments |Y i
j − Y i

j−1| bounded by

| log(pi−j+1/qi−j+1)|+ |E[log(pi−j+1/qi−j+1)]| ≤ C(i− j + 1)−α =: cij,

for some C ∈ (0,∞), by (42). Thus for each j ≤ i, for α ∈ (0, 1),

j∑
k=1

(cik)
2 = C

j∑
k=1

(i− k + 1)−2α ≤ C ′i1−α.

Then for each i and j ≤ i the Azuma-Hoeffding inequality implies that

P[|Y i
j | ≥ t] ≤ 2 exp(−Ct2iα−1),

for all t > 0. Hence for any ε > 0, the Borel-Cantelli lemma implies that

max
1≤j≤i

|Y i
j | ≤ i((1−α)/2)+ε,

for all but finitely many i. Also, from (42),

E
i∑

k=i−j+1

log(pk/qk) =
4E[Y1]

1− α
(
i1−α − (i− j)1−α) [1 + o(1)].

Hence for all i sufficiently large, since ε > 0 was arbitrary and α ∈ (0, 1)

i∑
k=i−j+1

log(pk/qk) =
4E[Y1]

1− α
(
i1−α − (i− j)1−α) [1 + o(1)] + o(i1−α). (72)

Thus from (34) and (72), as i→∞,

∆i = exp

(
4E[Y1]

1− α
i1−α[1 + o(1)]

) i∑
j=0

exp
(
−Cj1−α[1 + o(1)]

)
= exp

(
4E[Y1]

1− α
i1−α[1 + o(1)]

)
,
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from which the lemma follows. �

Proof of Theorem 8. Once again we apply Lemma 9. First we prove the lower bound.
From Lemma 14 we have that for a.e. ω, for all n

T (n) ≥ g(n) := exp

(
4E[Y1]

1− α
n1−α[1 + o(1)]

)
.

It follows that

g−1(n) =

(
1− α
4E[Y1]

)1/(1−α)

(log n)1/(1−α)[1 + o(1)].

Then (29) implies that a.s., for all but finitely many t, for any ε > 0

ηt(ω) ≤ g−1((2t)1+ε)

= (1 + ε)1/(1−α)

(
1− α
4E[Y1]

)1/(1−α)

(log t)1/(1−α)[1 + o(1)],

and thus we obtain the upper bound in the theorem. On the other hand, Lemma 14
implies that for a.e. ω, any ε > 0, and all n

T (n) ≤ h(n) := exp

(
4E[Y1]

1− α
n1−α[1 + o(1)]

)
.

Then (30) implies that, a.s., for infinitely many t,

t ≤ (ηt(ω))2h(ηt(ω)) ≤ exp

(
4E[Y1]

1− α
(ηt(ω))1−α[1 + o(1)]

)
,

from which the lower bound in the theorem follows. �

Now we deal with the ergodic case of the perturbation of Sinai’s regime.

Lemma 15 Suppose E[ζ1] = 0, s2 ∈ (0,∞), λ > 0, σ2 ∈ [0,∞), and α ∈ (0, 1/2). Then
for a.e. ω, as n→∞

T (n) = exp

(
λ

1− α
n1−α[1 + o(1)]

)
.

Proof. In this case, we have that (50) holds (now with λ > 0). Thus

E
i∑

k=i−j+1

log(pk/qk) =
λ

1− α
(
i1−α − (i− j)1−α) [1 + o(1)].

Now we can apply Lemma 6 to obtain for a.e. ω, for all but finitely many i,∣∣∣∣∣
i∑

k=i−j+1

(log(pk/qk)− E[log(pk/qk)])

∣∣∣∣∣ ≤ Cj1/2(log i)1/2,
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for j = 1, 2, . . . , i. Since α < 1/2 we have that for a.e. ω, as i→∞

i∑
k=i−j+1

log(pk/qk) =
λ

1− α
(
i1−α − (i− j)1−α) [1 + o(1)]. (73)

Hence, from (34) and (73), as i→∞,

∆i = exp

(
λ

1− α
i1−α[1 + o(1)]

) i∑
j=0

exp
(
−Cj1−α[1 + o(1)]

)
= exp

(
λ

1− α
i1−α[1 + o(1)]

)
,

and so the lemma follows. �

Proof of Theorem 5. The proof follows in a similar way to the above proof of Theorem
8, this time using the bounds in Lemma 15 and applying Lemma 9 once more. �

4.4 Proof of Theorem 4

We now prove Theorem 4. Once more, with the definition of ζn and Zn at (4), we have that
for a.e. ω and n sufficiently large, log(pn/qn) is given by (48), (49). In this case E[ζ1] = 0

and Y1/ξ1
d
= −Y1/(1−ξ1), which implies that E[log(pn/qn)] = 0 for all n sufficiently large.

Lemma 16 Suppose E[ζ1] = 0, s2 ∈ (0,∞), Y1/ξ1
d
= −Y1/(1 − ξ1), σ2 ∈ [0,∞), and

α > 0. For a.e. ω, for any ε > 0, for all but finitely many n,

exp(n1/2(log n)−1−ε) ≤ T (n) ≤ exp(n1/2(log log n)(1/2)+ε). (74)

Proof. We apply Lemma 10. We have that (49) and (50) hold in this case. For the upper
bound, consider (36). By Lemma 2 we have that for a.e. ω, for all but finitely many n,

max
0≤i≤n−1

i∑
k=1

log(pk/qk) < Cn1/2(log log n)1/2,

for some C ∈ (0,∞), and similarly for the second maximum in (36). Then (36) implies
the upper bound in (74). For the lower bound, we use (35). We apply Lemma 4 with
a(x) = (log x)−1−ε to obtain, for a.e. ω, for any ε > 0

max
1≤i≤n−1

i∑
k=1

log(pj/qj) ≥ n1/2(log n)−1−ε,

for all but finitely many n. With (35), the lower bound in (74) follows. �

Proof of Theorem. Again the proof is very similar to that of Theorems 7 and 2, this
time using Lemma 16 and Lemma 9. �
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4.5 Proofs of Theorems 6 and 9

Finally, we prove the results on the stationary distribution in the ergodic cases given in
Theorems 6 and 9. Given ω, suppose ηt(ω) is ergodic; then there exists a unique stationary
distribution (π0, π1, π2, . . .). It is straightforward to obtain the result (see, for example,
Lemma 5 of [21]) that, for a given ω such that ηt(ω) is ergodic, there exists a constant
C ∈ (0,∞) such that, for all n ≥ 2,

πn = C

n∏
k=1

qk
pk

= C exp

(
n∑
k=1

log(qk/pk)

)
. (75)

Proof of Theorem 6. Here we have that log(pn/qn) is given by (49), with λ > 0,
α ∈ (0, 1/2) and E[ζ1] = 0. In this case the j = i = n case of (73) implies that

n∑
k=1

log(qk/pk) = −
n∑
k=1

log(pk/qk) = − λ

1− α
n1−α[1 + o(1)],

as n→∞. Then (75) yields (11). �

Proof of Theorem 9. This time we have that log(pn/qn) is given by (42), where now
E[Y1] > 0 and α ∈ (0, 1). In this case the j = i = n case of (72) implies that

n∑
k=1

log(qk/pk) = −
n∑
k=1

log(pk/qk) = −4E[Y1]

1− α
n1−α[1 + o(1)],

as n→∞. Then (75) yields (16). �
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[4] P. Deheuvels, P. Révész, Simple random walk on the line in random environment,
Probab. Theory Related Fields 72 (1986) 215–230.

28



[5] R. Durrett, Probability: Theory and Examples, Wadsworth & Brooks/Cole, Pacific
Grove, CA, 1991.

[6] G. Fayolle, V.A. Malyshev, M.V. Menshikov, Topics in the Constructive Theory of
Countable Markov Chains, Cambridge University Press, 1995.

[7] W. Feller, The general form of the so-called law of the iterated logarithm, Trans.
Amer. Math. Soc. 54 (1943) 373–402.

[8] A.O. Golosov, Limit distributions for random walks in random environments, Soviet
Math. Dokl. 28 (1983) 18–22.

[9] A.O. Golosov, On the localization of random walk in a random medium, Russ. Math.
Surveys 39 (1984) 157–158.

[10] A.O. Golosov, Localization of random walks in one-dimensional random environ-
ments, Comm. Math. Phys. 92 (1984) 491–506.

[11] T.E. Harris, First passage and recurrence distributions, Trans. Amer. Math. Soc. 73
(1952) 471–486.

[12] W.M. Hirsch, A strong law for the maximum cumulative sum of independent random
variables, Comm. Pure Appl. Math. 18 (1965) 109–127.

[13] W. Hoeffding, Probability inequalities for sums of bounded random variables, J.
Amer. Stat. Ass. 58 (1963) 13–30.

[14] Y. Hu, Z. Shi, The limits of Sinai’s simple random walk in random environment,
Ann. Probab. 26 (1998) 1477–1521.

[15] H. Kesten, The limit distribution of Sinai’s random walk in random environment,
Phys. A 138 (1986) 299–309.

[16] H. Kesten, M.V. Kozlov, F. Spitzer, A limit law for random walk in random envi-
ronment, Compositio Mathematica 30 (1975) 145–168.

[17] M.V. Kozlov, Random walk in one dimensional random medium, Theory Probab.
Appl. 18 (1973) 387–388.

[18] J. Lamperti, Criteria for the recurrence and transience of stochastic processes I, J.
Math. Anal. Appl. 1 (1960) 314–330.

[19] M.V. Menshikov, I.M. Asymont, R. Iasnogorodskii, Markov processes with asymp-
totically zero drifts, Problems of Information Transmission 31 (1995) 248–261, trans-
lated from Problemy Peredachi Informatsii 31, 60–75 (in Russian).

[20] M.V. Menshikov, S.Yu. Popov, Exact power estimates for countable Markov chains,
Markov Processes Relat. Fields 1 (1995) 57–78.

[21] M.V. Menshikov, A.R. Wade, Random walk in random environment with asymp-
totically zero perturbation, J. Euro. Math. Soc. 8 (2006) 491–513. Preprint
http://arxiv.org/math/0608696

29
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