Skip to main content

Research Repository

Advanced Search

Modeling cliff erosion using negative power law scaling of rockfalls.

Barlow, J.; Lim, M.; Rosser, N. J.; Petley, D. N.; Brain, M. J.; Norman, E. C.; Geer, M.

Authors

J. Barlow

M. Lim

D. N. Petley

E. C. Norman

M. Geer



Abstract

We model cliff erosion using an approach based upon the negative power law scaling properties of rockfall magnitude–frequency distributions. These are derived from an extensive, high resolution, rockfall inventory for a series of sea cliffs near Staithes, North Yorkshire. A comparison between observed volumetric erosion and that produced by the model yields a statistically significant correlation. However, we note that the temporal resolution of the inventory can have an influence on results. Our data indicate that monthly inventories are capable of producing magnitude–frequency relations that model erosion in good correlation with observed events. However, for months that experience high magnitude events, seasonal inventories are more appropriate. Furthermore, increasing the return period between surveys has the effect of increasing the superimposition of rockfall events thereby reducing the slope of the power law, giving an incorrect picture of the scaling properties of rockfalls at this site. Applying observed variations in the negative power law scaling parameters to a probabilistic simulation model of cliff retreat provides a new means of assessing the most likely erosional scenarios and indicates that the current dataset may not be indicative of long term cliff evolution. This may provide a quantitative means of establishing an appropriate time window for characterizing rockfall erosion over decadal time scales.

Citation

Barlow, J., Lim, M., Rosser, N. J., Petley, D. N., Brain, M. J., Norman, E. C., & Geer, M. (2012). Modeling cliff erosion using negative power law scaling of rockfalls. Geomorphology, 139-140, 416-424. https://doi.org/10.1016/j.geomorph.2011.11.006

Journal Article Type Article
Acceptance Date Nov 8, 2011
Online Publication Date Nov 15, 2011
Publication Date 2012-02
Deposit Date Nov 18, 2011
Journal Geomorphology
Print ISSN 0169-555X
Electronic ISSN 0094-8659
Publisher Elsevier
Peer Reviewed Peer Reviewed
Volume 139-140
Pages 416-424
DOI https://doi.org/10.1016/j.geomorph.2011.11.006
Public URL https://durham-repository.worktribe.com/output/1534180