X. Zhuang
On error control in the element-free Galerkin method.
Zhuang, X.; Heaney, C.E.; Augarde, C.E.
Abstract
The paper investigates discretisation error control in the element-free Galerkin method (EFGM) highlighting the differences from the finite element method (FEM). We demonstrate that the (now) conventional procedures for error analysis used in the finite element method require careful application in the EFGM, otherwise competing sources of error work against each other. Examples are provided of previous works in which adopting an FEM-based approach leads to dubious refinements. The discretisation error is here split into contributions arising from an inadequate number of degrees of freedom eh, and from an inadequate basis ep. Numerical studies given in this paper show that for the EFGM the error cannot be easily split into these component parts. Furthermore, we note that arbitrarily setting the size of nodal supports (as is commonly proposed in many papers) causes severe difficulties in terms of error control and solution accuracy. While no solutions to this problem are presented in this paper it is important to highlight these difficulties in applying an approach to errors from the FEM in the EFGM. While numerical tests are performed only for the EFGM, the conclusions are applicable to other meshless methods based on the concept of nodal support.
Citation
Zhuang, X., Heaney, C., & Augarde, C. (2012). On error control in the element-free Galerkin method. Engineering Analysis with Boundary Elements, 36(3), 351-360. https://doi.org/10.1016/j.enganabound.2011.06.011
Journal Article Type | Article |
---|---|
Publication Date | 2012-03 |
Deposit Date | Jul 25, 2011 |
Journal | Engineering Analysis with Boundary Elements |
Print ISSN | 0955-7997 |
Electronic ISSN | 1873-197X |
Publisher | Elsevier |
Peer Reviewed | Peer Reviewed |
Volume | 36 |
Issue | 3 |
Pages | 351-360 |
DOI | https://doi.org/10.1016/j.enganabound.2011.06.011 |
Public URL | https://durham-repository.worktribe.com/output/1529398 |
You might also like
UKACM Proceedings 2024
(2024)
Presentation / Conference Contribution
Simulation of strain localisation with an elastoplastic micropolar material point method
(2024)
Presentation / Conference Contribution
Downloadable Citations
About Durham Research Online (DRO)
Administrator e-mail: dro.admin@durham.ac.uk
This application uses the following open-source libraries:
SheetJS Community Edition
Apache License Version 2.0 (http://www.apache.org/licenses/)
PDF.js
Apache License Version 2.0 (http://www.apache.org/licenses/)
Font Awesome
SIL OFL 1.1 (http://scripts.sil.org/OFL)
MIT License (http://opensource.org/licenses/mit-license.html)
CC BY 3.0 ( http://creativecommons.org/licenses/by/3.0/)
Powered by Worktribe © 2025
Advanced Search