J. Zaumseil
Electron-Hole Recombination in Uniaxially Aligned Semiconducting Polymers
Zaumseil, J.; Groves, C.; Winfield, J.M.; Greenham, N.C.; Sirringhaus, H.
Authors
Professor Chris Groves chris.groves@durham.ac.uk
Professor
J.M. Winfield
N.C. Greenham
H. Sirringhaus
Abstract
A promising, general strategy for improving performance of optoelectronic devices based on conjugated polymer semiconductors is to make better use of the fast intrachain transport along the covalently bonded polymer backbone. Little is known, however, about how the recombination rate between electrons and holes would be affected in device structures in which current flow is primarily along the polymer chain. Here a light-emitting field effect transistor (LFET) structure with a uniaxially aligned semiconducting polymer is used to show that the width and shape of the recombination zone depend strongly on polymer alignment. For alignment of the polymer parallel to the current the emission zone is 5–10 times wider than for perpendicular alignment. 2D drift-diffusion modeling is used to show that such significant widening of the recombination zone in the case of parallel alignment implies that the recombination rate constant is more than 100 times lower than expected for standard Langevin recombination. On the basis of Monte Carlo modeling it is proposed that such unexpected weak recombination is a result of the significant mobility anisotropy of the aligned polymer. These results provide new fundamental insight into the recombination physics of polymer semiconductors.
Citation
Zaumseil, J., Groves, C., Winfield, J., Greenham, N., & Sirringhaus, H. (2008). Electron-Hole Recombination in Uniaxially Aligned Semiconducting Polymers. Advanced Functional Materials, 18(22), 3630-3637. https://doi.org/10.1002/adfm.200800863
Journal Article Type | Article |
---|---|
Publication Date | Nov 1, 2008 |
Deposit Date | Apr 28, 2014 |
Journal | Advanced Functional Materials |
Print ISSN | 1616-301X |
Electronic ISSN | 1616-3028 |
Publisher | Wiley |
Peer Reviewed | Peer Reviewed |
Volume | 18 |
Issue | 22 |
Pages | 3630-3637 |
DOI | https://doi.org/10.1002/adfm.200800863 |
Keywords | Light-emitting materials, Optoelectronic materials, Organic materials, Transistors, Polymer semiconductors. |
Public URL | https://durham-repository.worktribe.com/output/1524626 |
You might also like
Decarbonising electrical grids using photovoltaics with enhanced capacity factors
(2023)
Journal Article
Modelling the effect of dipole ordering on charge-carrier mobility in organic semiconductors
(2023)
Journal Article
In-Materio Extreme Learning Machines
(2022)
Book Chapter
Towards Intelligently Designed Evolvable Processors
(2022)
Journal Article
Single event burnout sensitivity of SiC and Si
(2022)
Journal Article
Downloadable Citations
About Durham Research Online (DRO)
Administrator e-mail: dro.admin@durham.ac.uk
This application uses the following open-source libraries:
SheetJS Community Edition
Apache License Version 2.0 (http://www.apache.org/licenses/)
PDF.js
Apache License Version 2.0 (http://www.apache.org/licenses/)
Font Awesome
SIL OFL 1.1 (http://scripts.sil.org/OFL)
MIT License (http://opensource.org/licenses/mit-license.html)
CC BY 3.0 ( http://creativecommons.org/licenses/by/3.0/)
Powered by Worktribe © 2024
Advanced Search