H. Zhao
Dark fluid: A unified framework for modified Newtonian dynamics, dark matter, and dark energy
Zhao, H.; Li, B.
Abstract
Empirical theories of dark matter (DM) like modified Newtonian dynamics (MOND) gravity and of dark energy (DE) like f(R) gravity were motivated by astronomical data. But could these theories be branches rooted from a more general and hence generic framework? Here we propose a very generic Lagrangian of such a framework based on simple dimensional analysis and covariant symmetry requirements, and explore various outcomes in a top-down fashion. The desired effects of quintessence plus cold DM particle fields or MOND-like scalar field(s) are shown to be largely achievable by one vector field only. Our framework preserves the covariant formulation of general relativity, but allows the expanding physical metric to be bent by a single new species of dark fluid flowing in spacetime. Its non-uniform stress tensor and current vector are simple functions of a vector field with variable norm, not coupled with the baryonic fluid and the four-vector potential of the photon fluid. The dark fluid framework generically branches into a continuous spectrum of theories with DE and DM effects, including the f(R) gravity, tensor-vector-scalar-like theories, Einstein-Aether, and νΛ theories as limiting cases. When the vector field degenerates into a pure scalar field, we obtain the physics for quintessence. Choices of parameters can be made to pass Big Bang nucleosynthesis, parameterized post-Newtonian, and causality constraints. In this broad setting we emphasize the non-constant dynamical field behind the cosmological constant effect, and highlight plausible corrections beyond the classical MOND predictions.
Citation
Zhao, H., & Li, B. (2010). Dark fluid: A unified framework for modified Newtonian dynamics, dark matter, and dark energy. Astrophysical Journal, 712(1), 130-141. https://doi.org/10.1088/0004-637x/712/1/130
Journal Article Type | Article |
---|---|
Publication Date | Mar 1, 2010 |
Deposit Date | Jan 20, 2012 |
Publicly Available Date | May 1, 2014 |
Journal | Astrophysical Journal |
Print ISSN | 0004-637X |
Electronic ISSN | 1538-4357 |
Publisher | American Astronomical Society |
Peer Reviewed | Peer Reviewed |
Volume | 712 |
Issue | 1 |
Pages | 130-141 |
DOI | https://doi.org/10.1088/0004-637x/712/1/130 |
Keywords | Cosmology: theory, Dark matter, Galaxies: kinematics and dynamics, Gravitation. |
Public URL | https://durham-repository.worktribe.com/output/1522052 |
Files
Published Journal Article
(476 Kb)
PDF
Copyright Statement
© 2010. The American Astronomical Society. All rights reserved. Printed in the U.S.A
You might also like
Where shadows lie: reconstruction of anisotropies in the neutrino sky
(2023)
Journal Article
MGLENS: Modified gravity weak lensing simulations for emulation-based cosmological inference
(2023)
Journal Article
Upscaling ExaHyPE – on each and every core
(2023)
Report
Downloadable Citations
About Durham Research Online (DRO)
Administrator e-mail: dro.admin@durham.ac.uk
This application uses the following open-source libraries:
SheetJS Community Edition
Apache License Version 2.0 (http://www.apache.org/licenses/)
PDF.js
Apache License Version 2.0 (http://www.apache.org/licenses/)
Font Awesome
SIL OFL 1.1 (http://scripts.sil.org/OFL)
MIT License (http://opensource.org/licenses/mit-license.html)
CC BY 3.0 ( http://creativecommons.org/licenses/by/3.0/)
Powered by Worktribe © 2025
Advanced Search