GJ Carty
Visualizing the mechanism that determines the critical current density in polycrystalline superconductors using time-dependent Ginzburg-Landau theory
Carty, GJ; Hampshire, DP
Abstract
In polycrystalline superconducting materials optimized for high critical current density (JC) in high magnetic fields, the mechanism that determines JC has long remained uncertain because of the complicated manner in which the fluxon-fluxon and fluxon-microstructure forces combine. In this work, the time-dependent Ginzburg-Landau equations are used to produce visualizations of fluxons at JC that show the disorder in the pinned part of the flux-line lattice and the motion of those fluxons along grain boundaries that cause dissipation. Calculated values of JC are consistent with experimental data.
Citation
Carty, G., & Hampshire, D. (2008). Visualizing the mechanism that determines the critical current density in polycrystalline superconductors using time-dependent Ginzburg-Landau theory. Physical review B, 77(17), Article 172501. https://doi.org/10.1103/physrevb.77.172501
Journal Article Type | Article |
---|---|
Publication Date | May 1, 2008 |
Deposit Date | Jun 30, 2011 |
Publicly Available Date | Jul 12, 2011 |
Journal | Physical review B - Condensed Matter and Materials Physics |
Print ISSN | 1098-0121 |
Electronic ISSN | 1550-235X |
Publisher | American Physical Society |
Peer Reviewed | Peer Reviewed |
Volume | 77 |
Issue | 17 |
Article Number | 172501 |
DOI | https://doi.org/10.1103/physrevb.77.172501 |
Public URL | https://durham-repository.worktribe.com/output/1507062 |
Files
Published Journal Article
(3.7 Mb)
PDF
Copyright Statement
© 2008 The American Physical Society
You might also like
Self-Field Effects in a Josephson Junction Model for Jc in REBCO Tapes
(2021)
Journal Article
Downloadable Citations
About Durham Research Online (DRO)
Administrator e-mail: dro.admin@durham.ac.uk
This application uses the following open-source libraries:
SheetJS Community Edition
Apache License Version 2.0 (http://www.apache.org/licenses/)
PDF.js
Apache License Version 2.0 (http://www.apache.org/licenses/)
Font Awesome
SIL OFL 1.1 (http://scripts.sil.org/OFL)
MIT License (http://opensource.org/licenses/mit-license.html)
CC BY 3.0 ( http://creativecommons.org/licenses/by/3.0/)
Powered by Worktribe © 2025
Advanced Search