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Visualizing the mechanism that determines the critical current density in polycrystalline
superconductors using time-dependent Ginzburg-Landau theory
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In polycrystalline superconducting materials optimized for high critical current density (/) in high magnetic
fields, the mechanism that determines J has long remained uncertain because of the complicated manner in
which the fluxon-fluxon and fluxon-microstructure forces combine. In this work, the time-dependent Ginzburg-
Landau equations are used to produce visualizations of fluxons at J that show the disorder in the pinned part
of the flux-line lattice and the motion of those fluxons along grain boundaries that cause dissipation. Calculated

values of J. are consistent with experimental data.
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Polycrystalline intermetallic superconductors are the criti-
cal component in nearly all commercial magnets operating
above 10 T, including high-field NMR magnets and the
high-field magnets of the $10 billion ITER fusion reactor.
The most important design parameter for magnets is the criti-
cal current density (J-), which determines their size and,
hence, cost. The origins of the forces that act on the fluxons
in a superconductor to determine J- have been understood
for decades. However, the forces add together in a manner so
complex that there is no reliable description of the flux-line
lattice (FLL) at criticality or which fluxons move within the
superconductor during dissipation. The lack of theoretical
understanding is exemplified by the widespread use of both
flux-shear models!™* and flux-pinning models.*> In flux-
shear models, some fluxons are strongly pinned so that dis-
sipation first occurs when unpinned fluxons overcome the
fluxon-fluxon forces and shear past the stationary ones. In
flux-pinning models, the fluxon-fluxon forces are broadly ig-
nored and dissipation occurs when the Lorentz force pro-
vided by the macroscopic current is sufficient to move the
fluxons out of the pinning sites.

In contrast to the theoretical uncertainty, there is a far
clearer consensus about the properties of optimized materi-
als: the experimental values of J achieved in high magnetic
fields are 2 or 3 orders of magnitude below the depairing
current density (or theoretical limit) and the reduced volume
pinning force (Fp/Fpma. Where the volume pinning force
Fp=BJ, B is the magnetic field, and Fp , is the maximum
pinning force at constant strain and temperature) is a univer-
sal function of the reduced magnetic field (b=B/B,,, where
B,, is the upper critical field).! The form of the universal
function depends on the microstructure that leads to the op-
timum J..'® In Al5 polycrystalline materials (Nb;Sn and
Nb;Al) where grain boundaries provide the important micro-
structure, J- can be approximated by the Kramer scaling
law! given by

B2 |2
Fpm~ A= Z2p12(1 — p)2, (1)
M0K2 o

where « is the Ginzburg-Landau parameter and A~ 1/500.
The functional form has been confirmed in detailed measure-
ments in which magnetic field, temperature, and strain’-8
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were changed. Although such detailed measurements are not
yet available for other polycrystalline superconductors, simi-
lar field dependence has also been observed in different A15
materials’® as well as magnesium diboride,’ the Chevrel-
phase materials,'®!" YBa,Cu;0,_s thin films,'? and some
NbTi samples where the Ti precipitate ribbons have been
removed.'3 The main contribution of Kramer’s original the-
oretical work was to explain how the universal scaling of Fp,
which had been well established experimentally at that time,
could arise. However, the details of the theory are not reli-
able since Kramer used an incorrect FLL shear modulus
(Cg¢s), which when corrected gives the wrong field
dependence'* for J.. For simplicity, he also considered a
two-dimensional (2D) system and assumed that the fluxons
that sheared past stationary (pinned) fluxons were in a per-
fectly ordered hexagonal FLL. Much of the subsequent work
in the literature that attempts to explain the Kramer func-
tional form uses the same assumptions Kramer used includ-
ing behavior specific to three-dimensional (3D) systems,
such as fluxon bending or flux cutting is ignored and the FLL
retains its hexagonal symmetry (i.e., disorder is ignored).
Until now, there has been no way to assess the validity of
these assumptions or the associated reliability of any of the
proposed models or their predictions. The time-dependent
Ginzburg-Landau'>'® (TDGL) results presented here de-
scribe the spatial distribution of the order parameter for the
superelectrons () and the magnetic field penetrating the
polycrystalline superconductor. The visualizations of moving
fluxons show the disorder in the pinned part of the flux-line
lattice and the motion of those fluxons that cause dissipation.
They allow us to see reliably the nature of the mechanism
that determines J. in polycrystalline materials in high mag-
netic fields.

Previous TDGL computational work used forward-time
algorithms to analyze surface barriers'”!® and FLL structures
in layered 3D superconductors.'® More recently, an efficient
semi-implicit numerical algorithm?® has been successfully
developed to calculate J- in superconductors with point
pinning?! and coatings.?? This work uses the TDGL equa-
tions together with results from the Usadel theory for con-
sidering normal and superconducting components with dif-
ferent resistivities.”> It provides the first report of
calculations of J- in a complex technological material,
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namely, a bulk polycrystalline superconductor. The calcula-
tions were made practicable by using high-performance com-
puters and this efficient algorithm,?’ which considers the en-
tire grid rather than nearest neighbors only and gives about a
factor of 1000 speed improvement’?> over conventional
forward-time algorithms.

Figure 1 shows the layout of the simulated polycrystalline
superconductor. The superconducting grains are identical
truncated octahedra, which completely fill space. Cubic
grains were considered undesirable because they would pro-
duce continuous planar boundaries that run through the en-
tire material, which may have lead to artifacts not character-
istic of real polycrystalline materials. All grain boundaries
are of the same thickness. To remove macroscopic surface
barrier effects, 7 is not reduced to zero instantaneously at
the superconductor’s edge, but over a distance of 10¢, and a
small fully normal region is included at the extrema.???* The
macroscopic edges of the superconductor are angled with
respect to the grain boundary structure to smooth the local
spatial variations in field,>* thus reducing the uncertainty in
Jc values. Both 2D and 3D calculations are presented in this
work. For the 2D calculations, the x-y cross section chosen
was as shown in Fig. 1.

The grain boundaries are simulated as normal-metal
trilayers, with an inner layer of thickness & with increased
resistivity and outer layers each of thickness & where the
resistivity is the same as the normal-state resistivity of the
superconductor. Hence, the reduction in 7 occurs over a
longer range than the range over which the resistivity in-
crease occurs. This is consistent with 7~ being more sensi-
tive to strain?® than the normal-state resistivity. This trilayer
structure also ensured that superconductivity did not persist
near the edges of the grains above the bulk value of B.,—in
agreement with experiments®® that show similar B,, values
for polycrystalline materials and single crystals.

An external magnetic field was applied to the polycrystal-
line superconductor. Consistent with Bean’s model, the flux-
ons arrange to produce macroscopic screening currents and
an associated gradient in flux density.?’ J was then obtained
by using a least-squares fit to the spatial gradient of the local
field together with one of Maxwell’s equations in a proce-
dure analogous to a magnetization measurement.”’ Calcula-
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FIG. 2. Kramer plot for a 2D superconductor with k=10, a grain
size of 30 T=0.5T., where the electric field E is given by E
~1078H ,pg/ k*é and B,=uoH.,. Four values of the inner grain
boundary resistivity py were considered. 2pg, 5pg, 10pg and 20pg.
The inset shows experimental data by Bonney (Ref. 28) for
SnMogSg. Two mechanisms are clearly discernible in both compu-
tational and experimental data.

tion of J as a function of field in polycrystalline supercon-
ductors is very computationally expensive even with the
efficient algorithm. Therefore, a fast sweep from zero field to
above B, and back to zero again was first used to provide
initial conditions for the local magnetic field and order pa-
rameter. Then, at any required field, the initial conditions
were established and the applied magnetic field was held
constant so that the internal electric fields equilibrated to-
ward zero and a value of J- obtained. Since we are princi-
pally concerned with high-field J, the data are plotted in the
form of Kramer plots.

Figure 2 shows J as a function of B for a 2D supercon-
ductor with k=10 and a grain size of 30¢ across for grain
boundaries with four different inner layer resistivities. The
standard dimensionless units for TDGL computation have
been used.?”?* These data show that J is not significantly
affected by changes in the inner grain boundary resistivity.
Matching effects (oscillations) are observed in the low-field
data that result from the periodicity of the grains structures.
The distinct kink at about 0.8 B, suggests that there is one
mechanism operating in low fields and a different one in high
fields. A similar two-mechanism field dependence is shown
in the inset of Fig. 2, which is the experimental data on the
Chevrel-phase material SnMogSg,?® and has also been ob-
served by Kramer in the A15 Nb;Sn.?

Other 2D computational data (not shown) demonstrate
that the low-field properties are particularly complex since
there is no simple functional form for J- and, for example,
J decreases for very small grains consistent with the normal
volume fraction of the system increasing. This work focuses
on the high-field mechanism where there is experimental
consensus about Eq. (1), and in two dimensions, we have
computationally confirmed that J-= 1/ «* and is independent
of grain size. The prefactor A is weakly width dependent, but
for the data shown is 1.6 X 1073, which is within 20% of the

172501-2



BRIEF REPORTS

0.05- T T T T T ]
SO « = 10, Grain Size 30¢, p, = p; |
0.04 ._vovvg@oquvv 7
e v ~ VQ?)WVW ]
P A :
= 0.03f \\% ]
T o o ]
= 002[* ‘e
'\'m .~.~"- =y >
S°001f v 2D high-;"“-\_'
' o 3D high-E
[ e 3Dlow-E N
000 v v v T el
0.0 0.2 0.4 0.6 0.8 1.0

Local field (B )

FIG. 3. Kramer plot comparing high E (=107*H ,pg/ k*£) and
low E (=1078H ,pg/ kK*&) J- for 2D and 3D systems.

experimental values in Nb;Sn,® and Nb;AL*® Figure 3 com-
pares J for equivalent 2D and 3D systems (an inner grain
boundary resistivity py=pg was chosen to speed the compu-
tation, effectively giving monolayer grain boundaries). In
three dimensions, the Kramer dependence of J.- extends to
lower fields than that in two dimensions. Indeed, for the high
E-field data, it extends over the entire field range—a field
dependence observed experimentally.'* The J- values pre-
sented are not very sensitive to the E-field criterion at which
they are calculated—J/ - changes by about a factor of 4 when
the E-field changes by 4 orders of magnitude. The (1-b)?
factor in high-field J., which is observed in the 2D and 3D
computational results, as well as in experimental data, points
toward a flux-shear mechanism. A video of 2D computa-
tional data’? with an applied transport current just above J,
shows distorted fluxons shearing along grain boundaries. The
visualization identifies flux flow by highly distorted fluxons
past (almost) stationary fluxons in the grains with almost no
hexagonal symmetry as the mechanism that determines J in
polycrystalline materials. Flux flow along grain boundaries
past an ordered hexagonal FLL has been proposed before?
but the visualization shows the following: the fluxons that
move along grain boundaries are strongly distorted (i.e., not
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circular) particularly at the grain boundary triple points; the
order parameter is strongly depressed along all the grain
boundaries; there is a wide fluxon-free layer next to the grain
boundaries along which a large current flows; the fluxons
within the grains are almost stationary and their arrangement
or order is strongly affected by the shape of the grains rather
than having hexagonal symmetry. Hence, this work provides
the means to identify the important characteristics or ap-
proximations that can be used to reliably explain the Kramer
functional form. We have found in polycrystalline materials
with much larger grain size and much lower J than consid-
ered here that the hexagonal symmetry does occur as ex-
pected in the interior of the grains. In high B fields, the
prefactor A for 3D computational systems is about one-fifth
of that for two dimensions. This result can be explained by a
simple geometric argument since in the 3D system only
about one-fifth of the flux lines confined to the grain bound-
aries are parallel to the applied field (and thus have their
motion resisted by fluxon-fluxon interactions). This suggests
that a 2D system contains most of the important physical
processes operating in the 3D system. Figure 4 shows a snap-
shot of |#4? in selected x-y and y-z planes in a 3D supercon-
ductor. Fluxons in the grain interiors are predominantly par-
allel to the applied field, although they bend slightly toward
the local normal to a grain boundary on entry or exit. Visu-
alization of the normal current (and thus the dissipation)
shows that in three dimensions, as in two dimensions, most
of the dissipation is in or near the grain boundaries, implying
that those sections of fluxons passing through grain interiors
remain almost stationary when a current exceeding J is ap-
plied and the dissipation is due to fluxons that move along
the grain boundaries.

The superconductors studied in this work have rather sim-
plistic grain boundaries (no dislocations or complex compo-
sitional variations) but nevertheless lead to J values similar
to experimental observations. The extended calculations pre-
sented here allow the reader to see a visualization of flux
motion in polycrystalline superconductors derived using
TDGL and, hence, reliably assess the validity and accuracy
of the approximations and assumptions made that underpin
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FIG. 4. Snapshots of the order parameter for
the superelectrons squared (|#/%) in x-y (at two
different points along the z axis) and of y-z cross

sections of a 3D polycrystalline superconductor
with k=10 at H=0.151H_,. The grain boundaries

are equivalent to 2¢-thick monolayers with py
=ps. The spatial axes are calibrated in units of the

coherence length &.
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the phenomenological models for J. in the literature. Our
preliminary investigations into the effect of changing the de-
tailed properties of grain boundaries show that increases in
Jc can, for example, be obtained by changing the effective
B, of the superconductor by introducing high resistivity su-
perconducting layers near the grain boundaries. One can also
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consider removing the grain boundaries altogether, as has
been successful in developing high temperature supercon-
ductors with high J.3! Computation similar to that presented
here will enable us to more efficiently engineer supercon-
ducting materials with J properties closer to the theoretical
limit.
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