Skip to main content

Research Repository

Advanced Search

Bandwidth Selection for Mean-shift based Unsupervised Learning Techniques: a Unified Approach via Self-coverage

Einbeck, Jochen

Bandwidth Selection for Mean-shift based Unsupervised Learning Techniques: a Unified Approach via Self-coverage Thumbnail


Authors



Abstract

The mean shift is a simple but powerful tool emerging from the computer science literature which shifts a point to the local center of mass around this point. It has been used as a building block for several nonparametric unsupervised learning techniques, such as density mode estimation, clustering, and the estimation of principal curves. Due to the localized way of averaging, it requires the specification of a window size in form of a bandwidth (matrix). This paper proposes to use a so-called self-coverage measure as a general device for bandwidth selection in this context. In short, a bandwidth h will be favorable if a high proportion of data points falls within circles or ``hypertubes"; of radius h centered at the fitted object. The method is illustrated through real data examples in the light of several unsupervised estimation problems.

Citation

Einbeck, J. (2011). Bandwidth Selection for Mean-shift based Unsupervised Learning Techniques: a Unified Approach via Self-coverage. Journal of pattern recognition research, 6(2), 175-192. https://doi.org/10.13176/11.288

Journal Article Type Article
Publication Date Jan 1, 2011
Deposit Date Aug 22, 2011
Publicly Available Date Oct 25, 2011
Journal Journal of pattern recognition research.
Electronic ISSN 1558-884X
Publisher JPPR
Peer Reviewed Peer Reviewed
Volume 6
Issue 2
Pages 175-192
DOI https://doi.org/10.13176/11.288
Public URL https://durham-repository.worktribe.com/output/1504912

Files






You might also like



Downloadable Citations