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Abstract

The mean shift is a simple but powerful tool emerging from the computer science
literature which shifts a point to the local center of mass around this point. It
has been used as a building block for several nonparametric unsupervised learn-
ing techniques, such as density mode estimation, clustering, and the estimation of
principal curves. Due to the localized way of averaging, it requires the specifica-
tion of a window size in form of a bandwidth (matrix). This paper proposes to
use a so-called self-coverage measure as a general device for bandwidth selection
in this context. In short, a bandwidth h will be favorable if a high proportion of
data points falls within circles or “hypertubes” of radius h centered at the fitted
object. The method is illustrated through real data examples in the light of several
unsupervised estimation problems.

Keywords: Mean shift clustering, local principal curves, coverage, goodness-of-fit.

1. Introduction

We are given a p−variate random vector X with density function f(·), mean µ ∈ R
p

and covariance matrix Σ ∈ R
p×p. An unsupervised learning method attempts to gain

some knowledge on structure, composition, or certain landmarks of X. A special but
important case is linear principal component analysis (PCA), which provides a sequence
of best linear approximations to X. More specifically, the linear q−variate subspace that
minimizes the expected squared distance to X is given by Z = (γ1, . . . , γq)

T (X − µ), with
γj , j = 1, 2, . . . , q being the first q ≤ p eigenvectors of Σ. Nonparametric versions of this
concept have been developed, which in case of q = 1 lead to a principal curve [12]. A less
known concept, which can be thought of as representing the case q = 0, are “principal
points” [10], corresponding to the set {v(1), . . . , v(k)} ∈ R

p which minimizes the expected
squared distance to X, for (usually) predetermined k. As formalized by Tarpey & Flury [18],
objects labelled “principal” share the joint property of self-consistency, where Z is defined
to be self-consistent for X if E(X |Z) = Z almost surely. In the context of principal points,
this means that each v(j) ∈ Z is the expectation over all outcomes of X which are closest
to v(j) in terms of Euclidean distance. For principal curves, it means that each point on the
curve is the expectation over all points that project orthogonally onto that point.

Empirical algorithms for the estimation of principal points and curves have been de-
veloped. Flury [11] proposes to estimate principal points through Maximum Likelihood
(assuming normality of X) or via k−means. The latter approach is very intuitive in this
framework as the final cluster centers are, by construction, self-consistent. Hastie & Stuet-
zle’s (hereafter: HS) algorithm for the estimation of principal curves can be seen as a
variant of k−means, in which, starting from the first principal component line, the data are
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alternately projected onto the curve, and component–wise smoothed against the projection
indices.

This paper deals with a family of unsupervised learning methods which are based on
localization (rather than global optimization). The ground for methods of this type was laid
by Cheng [2], who introduced the “mean shift” as the shift necessary to move a point x ∈ R

p

towards the local mean around this point. Cheng showed that, when iterating the mean
shift, the resulting sequence of points always converges to a local mode of a kernel density
estimator f̂ of f . Even more attractively, if one assigns each data point to the local mode to
which its mean shift trajectory has converged, this turns into a clustering (or partitioning)
technique which does not require pre-specification of the number of cluster centers. However,
one still needs to define the size of the considered neighborhood through some bandwidth
parameter(s). Some attempts to bandwidth selection in this context have been made.
Comaniciu [3] discussed the possibility of using optimal bandwidths (based on asymptotic
bias–variance trade–off) originally derived for the purpose of multivariate density estimation
[16, 20], but he discarded this idea quickly for practical considerations. The suitability of
such density–based optimal bandwidths is also questionable from a conceptual point of
view, since the mean shift in general, and the mode selection problem in particular, are
more related to the gradient of f than to f itself [5, 19]. An alternative family of methods,
which is tailored towards the clustering problem, attempts to maximize the stability of the
partitioning under variation of the bandwidth [1, 3, 5]. These methods have been found
to work successfully, but here again, it is not clear whether a bandwidth which is optimal
for the sake of clustering is necessarily optimal for the problem of finding principal points
(in the form of local modes). In fact, in this article we will distinguish between these two
cases. The necessity for bandwidth selection rules which are specifically adapted to the
mode selection problem was also pointed out on a more theoretical level by Vieu [19].

Recently, the mean-shift has also been employed for the estimation of principal curves:
the local principal curve algorithm [6] alternates between a mean shift and a local PCA step.
In this context, it was suggested to choose a bandwidth which leads to a fitted principal
curve such that a large proportion of data points are not further away from the curve than
that very bandwidth. This leads to the idea of extracting bandwidths from a so-called self-
coverage curve, but it is still open how to achieve this task algorithmically. This selection
rule is provided in this paper, and its applicability is extended beyond the framework of
local principal curves.

We invest Section 2 in clarifying the terminology, and reviewing the concepts of mean
shift and its derived algorithms. In this course, we will also give a meaning to the yet
undefined notion of a “local principal point”, and argue that it makes sense to assign this
attribute to the local modes of f̂ . In Section 3 we formulate a coverage-based goodness-
of-fit criterion for principal points and curves, which can be interpreted similarly to the
coefficient of determination used in regression analysis. This criterion is still valid for, and
can be used for comparison with, methods which do not carry the label “local” (such as HS
principal curves).

From Section 4 on we focus on local principal points and curves. The self-coverage measure
is discussed in detail, and it is demonstrated how suitable bandwidths can be extracted from
it. In Section 5 we will have a closer look at mean shift clustering, and we discuss how the
self-coverage measure can be used to suit this purpose too. We close with the Discussion in
Section 6, including some words on principal-curve based clustering.
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2. Local principal points and curves

2.1 The mean shift

Assume that data X = (x1, . . . , xn)T , with xi ∈ R
p, have been sampled from X. Let

x ∈ R
p be an arbitrary point (which may or may not correspond to a data point). Let K(·)

be a p−variate kernel function (for instance, a Gaussian density function, which will be
used throughout this article), H a bandwidth matrix (which we assume to be of the shape
H = diag(h2

1, . . . , h
2
p), with hj > 0 being the component-wise bandwidth parameters), and

KH(·) = |H|−1/2K(H−1/2·). Let µH(x) denote the local mean, or local center of mass,
around x, i.e.

µH(x) =

∑n
i=1 KH(xi − x)xi

∑n
i=1 KH(xi − x)

.

Then the mean shift at x is given by

sH(x) = µH(x) − x =

∑n
i=1 KH(xi − x)(xi − x)

∑n
i=1 KH(xi − x)

i.e. sH(x) is a vector which shifts a point x to the local mean around x. The mean shift
has several interesting properties [4], one of which being:

sH(x) ∝ H
∇f̂H(x)

f̂H(x)
(1)

where f̂H(x) = 1
n

∑n
i=1 KH(xi−x) is a kernel density estimator of f . An asymptotic version

of the result does also exist; one deduces easily from the proof of Theorem 2.1 in [15] that

sH(x) = c(K)H ∇f(x)
f(x) + oP (H1), where c(K) is defined through c(K)Ip =

∫

uuT K(u) du,

with identity matrix Ip ∈ R
p×p, and 1 is a vector only consisting of 1’s. The significance of

(1) is that the mean shift is 0 when the density gradient is 0, implying that, at a mode mH

of f̂H, one has sH(mH) = 0 and so

µH(mH) = mH, (2)

hence mH being a fixed point of µH(·).
We will from now on assume that the data are scaled. This is not strictly necessary for

the estimation procedures that we present in the next two subsections, but will facilitate
the bandwidth selection problem drastically. The scaling could be done by dividing each
variable through its standard deviation or the interquartile range, but we choose in all
our data examples the somewhat unusual convention to divide each variable by its range.
Global variance is an irrelevant quantity for a local method; it is rather “spread” in a more
colloquial sense which is more important, as the full data range needs to be represented
by the fitted object. Another benefit of this way of scaling is the nice interpretability: A
bandwidth hj in j−th covariate direction covers 100hj% of the span of the j−th variable.

2.2 Local principal points as estimates of density modes

We can interpret the result (2) such that mH is the local average of all points in a neigh-
borhood of mH. Recalling the definition of a self-consistent point as the average of all
points which are closest to this point, it makes now sense to refer to property (2) as local
self-consistency, and we may rebrand all such local modes as local principal points (LPPs),
for bandwidth H.
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Fig. 1: Principal points and curves for Californian traffic data, with overlaid contour plot of a kernel density
estimate. Note that all estimation is carried out in scaled data space; data and fitted objects were then
re-scaled for convenience of plotting.

Comaniciu & Meer [4] showed that density modes may be estimated by iterating mean
shift steps, i.e. for any x, the sequence (mℓ)ℓ≥0 with m0 = x, and mℓ+1 = µH(mℓ) will
eventually converge to a local principal point mH , whereby the sequence of density estimates
(f̂H(mℓ))ℓ≥0 is monotonically increasing and achieves it maximum at mH .

We may run such iterated mean shift procedures from every point xi, i = 1, . . . , n. This
will eventually identify all local principal points, say m(j), j = 1, . . . , k (where the index H
is omitted for notational convenience). These local principal points can be collected in a set
mk = {m(1), . . . ,m(k)}, which can be considered as an estimator of {v(1), . . . , v(k)}. Strictly
speaking, mk is a multiset, as several trajectories will converge to each local mode, but let
us use the convention that we remove all multiple entries. In contrast to the k−means or
the ML approach, the number k of principal points does not need to be known beforehand,
and is only determined by the bandwidth H.

An example is provided in figure 1 for a simple data pattern involving vehicle speed and
flow measurements on a Californian freeway (this type of data is sometimes referred to
as a“fundamental diagram” in the traffic engineering literature). The diamond symbols
correspond to the principal points (PPs) in Flury’s sense, estimated with k−means, for
k = 3. The solid squares show the local principal points, estimated using a constant
bandwidth h = h1 = h2 = 0.08 on the scaled data. Additionally, we provide contours of a
density estimate using the same bandwidth. It is evident that the LPPs occupy positions
of higher (namely: locally maximal) density compared to the PPs estimated via k−means.
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2.3 Local principal curves as estimates of density ridges

Local principal curves (LPCs) have been introduced by Einbeck et al. [6], as a mean-shift
based principal curve algorithm. Given a starting point, say x(0), one alternates between a
mean shift and a local PCA step, i.e. at j−th iteration one has

(A) m(j) = µH(x(j))

(B) x(j+1) = m(j) + tγ1,H(x(j))

where γ1,H(x(j)) is the first eigenvector of the local covariance matrix

ΣH(x(j)) =
n

∑

i=1

KH(xi − x(j))(xi − m(j))(xi − m(j))
T /

n
∑

i=1

KH(xi − x(j))

If the end of the data cloud is reached (which is algorithmically determined by finding the
point at which the distance between two neighboring m(j)’s passes below a given threshold),
then the same procedure is followed from x(0) into the direction of −γ1,H(x(0)). The local
principal curve is given by the set of points, say md (d for discrete), which consists of all
the m(j)’s (on either side of x(0)). If desired, a continuous and differentiable curve through
p−variate space can be constructed from md by laying a natural cubic spline function
ms : R −→ R

p, λ 7→ ms(λ) (s for smooth) through its elements. The parametrization λ is
naturally defined through the arc-length of the curve. Each data point xi can be projected
onto the curve and represented (“compressed”) through a univariate projection index λi.
Details on these techniques are irrelevant for the presentation of this paper [7].

If H = h2Ip, one can show that, asymptotically [9],

m(j+1) − m(j) =

[

c(K)

f(x(j))
h2 ±

1

||∇f(x(j))||
t

]

∇f(x(j)) (3)

where the first summand in the squared bracket is the mean shift contribution, while the
second term is the contribution of the local PCA step. The sign is a “+”’ when climbing
uphill and a “–” when climbing downhill, implying that the curve stops at some point close
to the boundary when equality of the two terms is met. The natural choice for the step size
is t = h.

The starting point x(0) may be selected at random or by hand. Any of the principal
points (in Flury’s sense) or local principal points are sensible choices, and, in the example
presented, any of these choices would lead to a practically identical curve. The local principal
curve will only pass exactly through a local principal point, if this point is used as starting
point for the LPC, and the same bandwidth is used for both. If the latter is true but not the
former, then the curve will still pass almost exactly through those points, provided that the
LPC covers that part of the data cloud at all (see Section 4 for tools which help checking
this assumption). This is illustrated in figure 1, where the upper LPP is taken as starting
point.

The interpretation of (3) is that local principal curves follow the gradient of the density,
which means in practice that they will pass along the density ridges. This is illustrated
in figure 2. The black “+” symbols are the local centers of mass, with the red triangle
highlighting x(0). All local principal points, curves, and the density estimate used in figures
1 and 2 are computed using the same diagonal bandwidth matrix H = diag(0.082, 0.082)
after scaling.
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Fig. 2: Kernel density estimate of (scaled) speed-flow data, with LPC points md (+) superimposed. The
LPP used as starting point is highlighted through a red triangle.

In summary, just as local principal points are estimators of density modes, local principal
curves can be thought of as estimating density ridges. The relationship between LPCs and
HS curves is just the same as that between LPPs and PPs: the local methods give biased
estimates of the (self-consistent) principal points or curves, in the sense that they are
stretched towards the high density regions. The essential common feature of local principal
points and curves is that they are constructed through a sequence of local centers of mass.
Their shape is only determined by the local topology of the data (and the bandwidth
parameters), rather than global distance-minimizing criteria.

3. Coverage

We define the coverage Cm(τ) of a principal object1 m as the proportion of all data points
whose distance to their nearest point on m is at most τ . For a set of principal points, this
would be the proportion of points lying inside any circles (p = 2) or (“hyper”-)balls (p ≥ 3)
centered at v(j), j = 1, . . . , k. For principal curves, one can think of the coverage as the
proportion of points situated within a band (p = 2) or (“hyper”-)tube (p ≥ 3) centered
at the curve. Formally, for each xi ∈ R

p, define the “residual” ǫi as the shortest vector
connecting xi and (any point of) m, with residual length ||ǫi||. Then we can write

Cm(τ) =
1

n

n
∑

i=1

1{||ǫi||≤τ} ≡ Fn(τ) (4)

where Fn is just the empirical distribution function of the residual length. Note that Cm(τ)
is monotonically increasing with τ . Computing the coverage for all τ , one obtains the
coverage curve (τ, Cm(τ)).

1. We use this a general term encompassing any of principal components, points, curves, etc., with or
without the attribute “local”
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Fig. 3: Coverage curves for the fundamental diagram. Left: (local) principal points; right: (local) principal
curves.

For the fitted (local) principal points/curves from figure 1, the coverage curves are pro-
vided in figure 3. In the left panel, we see that the coverage curve rises initially quicker for
the LPPs than for the principal points estimated via k−means, but that the latter outper-
forms the former from about τ ≈ 0.13. For the principal curves, the LPC fit seems to be
slightly superior to the HS curve throughout. One also notes that the coverage curves for
principal curves rise more quickly than those for principal points. This is plausible, since it
is harder to cover a data cloud through circles around a few points, compared to bands of
the same size along a curve.

Using Cm(τ) as a goodness-of-fit measure has an obvious drawback; it depends on τ and
so no unambiguous conclusion can be drawn. So, the information provided by the coverage
curve needs to be worked into a single summary statistics. Clearly, a “good” coverage curve
will be concave and rise quickly. Hence, the immediate idea is to use the left top area, say
A, between τ = 0, Cm(τ) = 1, and the curve, as a measure of goodness-of-fit. Theoretically,
this area has an appealing interpretation. Note that

A =

∫ ∞

0
(1 − Fn(τ))dτ =

1

n

n
∑

i=1

∫ ∞

0
1{||ǫi||>τ}dτ =

1

n

n
∑

i=1

||ǫi||

is just the mean length of the residuals! Next, we set this area A in proportion to the area,
say A(P), which would be obtained for the corresponding q−variate parametric benchmark,
which in the case q = 0 is the overall mean (“1-means-estimator”), and in the case q = 1
is a linear principal component line. Computing “1 minus this ratio” yields the coverage
coefficient, RC

RC ≡ 1 −
A

A(P)
= 1 −

∑n
i=1 ||ǫi||

∑n
i=1 ||ǫ

(P)

i ||
=

∑n
i=1

(

||ǫ(P)

i || − ||ǫi||
)

∑n
i=1 ||ǫ

(P)

i ||
,

which can be conveniently interpreted as the mean reduction in residual length. This double-
interpretation, both in terms of residuals and in terms of coverage, makes RC an attractive
measure of goodness-of-fit in this context.

In the traffic example, the values of RC for the LPP and the PP fits are 0.574 and 0.579,
respectively, indicating that both methods fit almost equally well. Interpretationally, a
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value of, say, RC = 0.574 for the LPP fit means that the mean residual length reduces
by 57.4% when using residuals to the next LPP rather than to the overall mean. For the
principal curves, the value of RC for the LPC fit is 0.627, while that for the HS fit is 0.606,
implying that the LPC fits slightly better for these data.

Generally, RC takes values in (−∞, 1], with 1 corresponding to the best possible fit, 0
corresponding to a ‘bad’ fit of the same quality as the parametric benchmark, and negative
values corresponding to a fit being worse. In this sense, RC behaves similar in spirit to
the coefficient of determination (R2) known from regression analysis. It also shares the
property of R2 that, the more complex the model, the higher values would be attained.
That means that, if R2 or RC were used for model selection, or specifically bandwidth
selection, then maximizing these coefficients would lead inevitably to overfitting. Flury
[11] named this property of R2 a “shortcoming”, but one could argue that this depends
on whether or not one takes it as what it is, namely as a goodness–of–fit criterion. The
coefficient of determination checks, given some selected model, whether the attained fit is
acceptable, but another criterion should be used for the actual selection of the model. This
does not invalidate, in my opinion, its proper use as a measure of goodness–of–fit.

Precisely the same holds in our context. We may reasonably use the coverage curve,
Cm(τ), or its summary statistic, RC , as measures of goodness–of–fit for any sort of prin-
cipal objects. However, here it ends. We cannot use them, specifically, for bandwidth
selection for local principal points or curves, since the solution maximizing these criteria
would encompass all observations xi, i = 1, . . . n, which is obviously unacceptable. We will
address this problem by manipulating the coverage curve appropriately.

4. Self-coverage

We wish to have a unifying procedure, which, for estimation problems of the type considered
in Section 2, helps us to select a suitable bandwidth. Finding a full p×p bandwidth matrix
H is a rather elusive task, as it would require to select 1

2p(p + 1) bandwidths. Even the
simpler problem of having to select the diagonal bandwidths in H = diag(h2

1, . . . , h
2
p) is

challenging, but having scaled the variables as outlined in Section 2.1, there is very often
no need to work with different degrees of smoothing in different coordinate directions.

Hence, we are working in this section in a setup in which

(A1) H = h2Ip;

(A2) in the case of principal curves: t = h;

implying that there is only one single smoothing or tuning parameter to select, namely the
univariate bandwidth h.

The idea that we are going to convey is most intuitively explained in the context of prin-
cipal curves, but still valid otherwise. Assume that, for some data cloud, a local principal
curve of bandwidth h, say m(h), in either discrete or continuous representation, is being
fitted. Then we would assume the curve to fit well, if the bandwidth h reflected the “thick-
ness” of the data cloud around the curve. More statistically speaking, we would expect
that, at each point along the curve, the data points to either side of it are scattered with a
residual standard deviation of about h. If the width of the data band around the curve were
much thinner than h, we would have chosen a bandwidth which is unnecessarily large, re-
sulting in an oversmoothed principal curve. If the data cloud were much thicker, the chosen
bandwidth would have been too small, implying that not all data would have been used for
the construction of the curve. Hence, if a certain bandwidth h is good, then the coverage
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at exactly this tube size should attain a good value as well. Similar considerations leading
to the same conclusions apply if we argue in terms of a set of principal points m(h) = mk:
the detected cluster centers using bandwidth h should ideally correspond to the local means
of all points of the respective cluster, so the coverage of m(h) at ball radius h should be
large.

For either of local principal points or curves, computing the coverage for the same radius,
τ , which was used as bandwidth h, and tracing this function over all values of h, leads to
the definition of the self-coverage

S(h) = C
m(h)(h). (5)

The function S(h) will eventually converge to 1, so we cannot simply take its maximum
in order to detect the most suitable bandwidth. However, unlike C(τ), the self-coverage
curve does not converge monotonically, but possesses distinctive features which we can
exploit. There are essentially three sorts of features that we are interested in: (i) We
may have the situation of an already reasonably fitting object, but using a smaller than
ideal bandwidth. Then increasing h will increase S(h) monotonically, until the full width
of the data cloud is covered, from which point S(h) will level off. (ii) There may be
certain “threshold“ bandwidths, from which on certain parts of the data cloud, which were
previously inaccessible for smaller bandwidths, are now visited. In this case, there will be a
very sudden jump in the self-coverage curve. (iii) At any stage, an increase of the bandwidth
may blur previously well fitted parts of the fitted object, so that the self-coverage even
decreases.

Bandwidths of type (i) would be the most desirable ones, but they are also the most
difficult ones to detect reliably. Bandwidths of type (ii) and (iii) are very easy to detect,
but have to be considered with care. They can be seen as the smallest or largest bandwidths,
respectively, before the fit breaks down.

We are going to detect bandwidths according to scenarios (i)-(iii) through one single
criterion, which targets points of negative curvature of S(h). Assume we have evaluated
S(h) over a grid of bandwidths h1 < . . . < hL (a setting which works well is to use a grid
with a spacing of 0.005; so if one investigates the span of, say, h = 0.005 to 0.4, one needs
L = 80). The curvature, S′′(hℓ), is then easily captured by considering second differences;

△2S(hℓ) = S(hℓ+1) − 2S(hℓ) + S(hℓ−1). (6)

Since we are interested in points of large negative curvature, we need to find the minima of
(6). Let h(j) be the bandwidth yielding the j−th lowest value of (6) under the constraint

S(hℓ) > max{S(h1), . . . , S(hℓ−1), s} (7)

where s ∈ (0, 1) is a pre–defined constant. The condition (7) will enforce that no bandwidth
is selected which leads to a coverage which could already be achieved through a smaller
bandwidth, or which falls below a threshold s. Based on experience with a wide range of
real data sets, the setting s = 2/3 has been found to work generally well for local principal
curves, while for local principal points, where it is more difficult to achieve high coverages,
a lower value of s = 1/3 is recommended.

The optimal bandwidth under this criterion is h(1). Often it will be useful to consider
also the next-best candidates, say h(2) and h(3), as different suitable solutions may exist at
different degrees of resolution. This will be illustrated through real data examples below.
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Fig. 4: Self-coverage curves for the fundamental diagram, with selected bandwidths h(1) (thick solid), h(2)

(dashed), and h(3) (dotted). Top: selection for LPPs; middle: selection for LPCs; bottom: scaled data with
LPPs and LPC, fitted using the selected bandwidths 0.100 each. The equality of the two bandwidths is
coincidental.
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Firstly, we consider the speed-flow data used previously. The self-coverage curve for local
principal points, in the form as it is produced by default in R package LPCM [8], is provided
in the first panel of figure 4, with the thick solid, dashed, and dotted lines corresponding to
h(1), h(2) and h(3) respectively. The first and the second hump of the curve, at h(2) = 0.100
and h(1) = 0.185, correspond to the 3- and 2- cluster solutions, respectively. Both are
bandwidths of type (iii). The 1-cluster solution is provided by h(3) = 0.365, which is a type
(i) bandwidth.

The self-coverage curve for the local principal curve (using the leftmost LPP as starting
point) selects a bandwidth of type (i) at h(1) = 0.100 (see the second panel of figure 4).
Two further, but less significant, type (i) bandwidths are situated nearby. The resulting
LPPs (using the 3–cluster solution) and the LPC are depicted in the bottom panel. We do
not provide plots of the second differences △2S(hℓ) as they have a quite erratic appearance
and do not add much value.

In addition, we consider the well-known iris data, which are part of the standard R
distribution [14]. The iris data feature 4-variate measurements (in cm) of petal and sepal
length and width, respectively, of n = 150 flowers belonging to certain species of iris. We
apply the methodology sequentially. Firstly, we apply the self-coverage technique on the
problem of finding the density modes. The resulting self-coverage curve is provided in figure
5. From left to right, the bandwidths at h(3) = 0.19 and h(2) = 0.32 are both 2–cluster
solutions of type (i) and (iii), respectively. The bandwidth at h(1) = 0.76 is a 1–cluster
solution of type (ii), which would probably not be of interest here, despite being the overall
winner in terms of criterion (6). We choose to work with the bandwidth h(3) = 0.19, yielding
the fitted density modes in form of black triangles in figure 6. Taking now one of these two
local principal points — we choose arbitrarily that one belonging to the green cluster — as
the starting point for the local principal curve, one obtains for the latter the self-coverage
curve provided in figure 7. Here we observe a type (ii) bandwidth at h(1) = 0.16, which
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Fig. 6: Iris data (scaled) with local principal points (black triangles), estimated using h(3) = 0.19. The
colours correspond to the mean shift clusters, see Section 5.

is the smallest (“most wiggly“) bandwidth such that the LPC is able to connect the two
clusters. When increasing h further, two type (i) bandwidth candidates at h(2) = 0.17 and
h(3) = 0.20 are found. From this point onwards the gain in coverage is rather due to the
increase of the tube size, than due to the improvement of the fit. The fitted local principal
curve using h(1) = 0.16, which achieves a value of RC = 0.36, is provided in figure 8.
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Fig. 7: Iris data: Self-coverage curve for LPCs, with selected bandwidths at h(1) = 0.16, h(2) = 0.17, and
h(3) = 0.20.
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Fig. 8: LPC through iris data, fitted with h(1) = 0.16.

We finish this section with some algorithmic technicalities. Firstly, if the principal curve
is just provided in form of a set of points, such as md, then the ||ǫi|| are computed through
the distance to the nearest of these points (just as if they were principal points), so that
the (self-) coverage curve is only approximate in this case [6]. The software provided in
[8] uses numerical optimization in order to compute the nearest point on the smooth curve
ms, yielding exact (self-) coverage curves. The differences between these two types of (self-)
coverage curves are usually negligible, though the approximate self-coverage curves may
result in little spurious humps at places, which may impact on the bandwidth selection
task. All (self-)coverage curves shown in this paper are exact.

Secondly, one needs to meet a minor precaution to avoid overfitting at very small band-
widths. For density mode estimation, using h −→ 0 will lead to a local principal point at
almost every data point, implying that S(h) ≈ 1. Similarly, a very small bandwidth will
lead to principal curve which performs some sort of random walk within the data cloud,
which can lead to a very long but useless curve with a high coverage. In the former case,
the precaution is to base the calculation of the self–coverage only on cluster centrers to
which more than two mean shift trajectories converged. In the latter case, the precaution is
to disallow principal curves to intersect themselves. Both measures only have an effect for
very small bandwidths, but do not influence the self-coverage curve in bandwidth domains,

say h
>
∼ 0.05, in which we are realistically interested.

5. Clustering

Clustering based on local principal points has been suggested already by Cheng [2]. The
idea, as well as the implementation, is very simple: Each data point xi is allocated to the
density mode, say ci ∈ {m(1), . . . ,m(k)}, to which its mean shift trajectory has converged.
This method, known as mean shift clustering, is illustrated in figure 9. Compared to
other clustering algorithms, mean shift clustering has the massive advantage that it does
not require to pre-determine the number of clusters. However, it requires the selection
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Fig. 9: Mean shift clustering for (scaled) speed-flow data. Top: h = 0.010, bottom: h = 0.185.

of the bandwidth(s), and the lack of automated procedures for this purpose has perhaps
contributed to the fact that mean shift clustering has not yet become a widely accepted
and applied tool.

Of course, we may just take the bandwidths selected by the usual self-coverage routine.
These are the bandwidths used in figure 9, and often this will work well. However, concep-
tually there is a caveat in this approach: The coverage is estimated by considering circles,
tubes, etc, around the fitted object. That is, for the coverage estimation, points are associ-
ated to the nearest cluster center, while the mean shift clustering itself does not necessarily
assign points to the nearest cluster center. Hence, in (4), one should add the requirement
that each xi is attached to their respective cluster center ci. The “cluster residual” would be
defined as ǫc

i = xi − ci and using these adapted residuals in (4), and, eventually, in (5) and
(6), will give bandwidths which are more tailored to the clustering problem. An illustration
is given through the traffic data example. It is well known that the upper branch corre-
sponds to free-flow traffic, while the lower branch corresponds to congested traffic. Figure 9
shows the clustering obtained using the two bandwidths h = 0.100 and h = 0.185 detected
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Fig. 10: Mean shift clustering for (scaled) speed-flow data. Top: self-coverage curve using cluster residuals;
bottom: clustering with selected bandwidth h(2) = 0.170.

previously. For the former bandwidth, a third (blue) cluster which can be attributed to
night time driving is detected. The two cluster-solution does not appear satisfactory; the
uncongested cluster seems too “greedy” and takes over a considerable amount of the con-
gested data points. Using the suggested adaption to the self-coverage curve, this problem
alleviates: The two-cluster bump in the self-coverage curve is now replaced by a plateau,
of which, by criterion (6) with the usual default setting of s, h(1) = 0.100 and h(2) = 0.170
(notably lower than 0.185), are selected. The resulting 2-cluster solution, using h(2), is
provided in figure 10. Note that this solution is already present, in weaker form, in figure 4:
the little bend shortly before h(1) would correspond to the seventh–best bandwidth selected,
h(7) = 0.170.

6. Discussion

We have provided a semi-automatic tool for the selection of bandwidths for unsupervised
multivariate mean-shift based learning techniques. The method is “semi–automatic” and
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not “fully automatic”, since it will often produce multiple feasible solutions, reflecting the
fact that useful information may be present at different degrees of resolution.

An important simplification that has been made in this paper is the restriction (A1) to
a diagonal bandwidth matrix, with equal entries in the diagonal. One may criticize this as
being not flexible enough. However, if the data are scaled, then this problem is significantly
alleviated. We note that the situation is here different to the regression context, where one
investigates the impact of the components of X onto an external variable Y , and the degree
of localization needed to describe this impact may very well be very different with different
components, regardless whether the data are scaled or not.

The techniques presented in this paper are, in principle, extendible and applicable beyond
the framework considered here. For instance, the local principal surface algorithm [7] does
make use of the mean shift as the essential tool of estimation too, so that the methods
proposed here should straightforwardly extend to this case, and preliminary investigations
brought encouraging results.

One may also consider extensions of this technique to “principal curve- based clustering”
[17]. Local principal curves allow to fit separate branches to separate parts of the data
cloud. Having selected a suitable starting point within each cluster, a principal curve may
be launched from each of these. Each data point can then be projected to the nearest
point on the nearest curve, and is accordingly classified. We illustrate this technique by
considering, for ease of presentation, only those two variables of the iris data set which
represent the “length” of the petals and sepals. A branched local principal curve using
starting points selected via 2−means is shown in figure 11, along with the projections and
the classification. In order to adapt the self-coverage techniques successfully to this context,
one would need to disallow individual branches to creep into other clusters.
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Fig. 11: Example for principal-curve based clustering.
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Finally, one could investigate the extension to variable bandwidths, i.e. bandwidths h =
h(x) or even H = H(x) which take different values in different regions of the covariate space.
Methods of this type have been considered by computer scientists for applications such as
image analysis [1] or object tracking [13]. Though the results were partially encouraging,
care needs to be taken with this approach. In fact, it turns out that the corresponding
density estimator f̂ obtained via H(x) is not a proper density, i.e. it does not integrate to 1
[1]. Secondly, such a technique may lead to undesired results at it could move the estimated
modes [19].

It is finally noted that implementations of all methods in the statistical programming
language R [14], as well as the traffic data set, are provided in [8].
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