T. Ward
The Abramov-Rokhlin entropy addition formula for amenable group actions
Ward, T.; Zhang, Q.
Authors
Q. Zhang
Abstract
In this note we show that the entropy of a skew product action of a countable amenable group satisfies the classical formula of Abramov and Rokhlin.
Citation
Ward, T., & Zhang, Q. (1992). The Abramov-Rokhlin entropy addition formula for amenable group actions. Monatshefte für Mathematik, 114(3-4), 317-329. https://doi.org/10.1007/bf01299386
Journal Article Type | Article |
---|---|
Publication Date | Jan 1, 1992 |
Deposit Date | Oct 12, 2012 |
Publicly Available Date | Oct 19, 2012 |
Journal | Monatshefte für Mathematik |
Print ISSN | 0026-9255 |
Electronic ISSN | 1436-5081 |
Publisher | Springer |
Peer Reviewed | Peer Reviewed |
Volume | 114 |
Issue | 3-4 |
Pages | 317-329 |
DOI | https://doi.org/10.1007/bf01299386 |
Public URL | https://durham-repository.worktribe.com/output/1502632 |
Files
Accepted Journal Article
(305 Kb)
PDF
Copyright Statement
The original publication is available at www.springerlink.com
You might also like
Book review: "Automorphisms and equivalence relations in topological dynamics"
(2015)
Journal Article
Directional uniformities, periodic points, and entropy
(2015)
Journal Article
Homogeneous dynamics: a study guide
(2015)
Book Chapter
Dynamical invariants for group automorphisms
(2015)
Book Chapter
Towards a Pólya–Carlson dichotomy for algebraic dynamics
(2014)
Journal Article