Dr George Mertzios george.mertzios@durham.ac.uk
Associate Professor
Vertex Splitting and the Recognition of Trapezoid Graphs
Mertzios, G.B.; Corneil, D.G.
Authors
D.G. Corneil
Abstract
Trapezoid graphs are the intersection family of trapezoids where every trapezoid has a pair of opposite sides lying on two parallel lines. These graphs have received considerable attention and lie strictly between permutation graphs (where the trapezoids are lines) and cocomparability graphs (the complement has a transitive orientation). The operation of “vertex splitting”, introduced in (Cheah and Corneil, 1996), first augments a given graph G and then transforms the augmented graph by replacing each of the original graph’s vertices by a pair of new vertices. This “splitted graph” is a permutation graph with special properties if and only if G is a trapezoid graph. Recently vertex splitting has been used to show that the recognition problems for both tolerance and bounded tolerance graphs is NP-complete (Mertzios et al., 2010). Unfortunately, the vertex splitting trapezoid graph recognition algorithm presented in (Cheah and Corneil, 1996) is not correct. In this paper, we present a new way of augmenting the given graph and using vertex splitting such that the resulting algorithm is simpler and faster than the one reported in (Cheah and Corneil, 1996) F. Cheah and D.G. Corneil, On the structure of trapezoid graphs. Discrete Applied Mathematics, 66 2 (1996), pp. 109–133.
Citation
Mertzios, G., & Corneil, D. (2011). Vertex Splitting and the Recognition of Trapezoid Graphs. Discrete Applied Mathematics, 159(11), 1131-1147. https://doi.org/10.1016/j.dam.2011.03.023
Journal Article Type | Article |
---|---|
Publication Date | Jul 6, 2011 |
Deposit Date | Dec 8, 2011 |
Publicly Available Date | Sep 16, 2014 |
Journal | Discrete Applied Mathematics |
Print ISSN | 0166-218X |
Electronic ISSN | 1872-6771 |
Publisher | Elsevier |
Peer Reviewed | Peer Reviewed |
Volume | 159 |
Issue | 11 |
Pages | 1131-1147 |
DOI | https://doi.org/10.1016/j.dam.2011.03.023 |
Keywords | Trapezoid graphs, Permutation graphs, Recognition, Vertex splitting, Polynomial algorithm. |
Public URL | https://durham-repository.worktribe.com/output/1502568 |
Files
Accepted Journal Article
(424 Kb)
PDF
Copyright Statement
NOTICE: this is the author’s version of a work that was accepted for publication in Discrete Applied Mathematics. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in Discrete Applied Mathematics, 159, 11, 2011, 10.1016/j.dam.2011.03.023.
You might also like
Interference-free walks in time: Temporally disjoint paths
(2022)
Journal Article
Equitable scheduling on a single machine
(2022)
Journal Article
The Power of Linear-Time Data Reduction for Maximum Matching
(2020)
Journal Article
When can graph hyperbolicity be computed in linear time?
(2018)
Journal Article
A linear-time algorithm for maximum-cardinality matching on cocomparability graphs
(2018)
Journal Article
Downloadable Citations
About Durham Research Online (DRO)
Administrator e-mail: dro.admin@durham.ac.uk
This application uses the following open-source libraries:
SheetJS Community Edition
Apache License Version 2.0 (http://www.apache.org/licenses/)
PDF.js
Apache License Version 2.0 (http://www.apache.org/licenses/)
Font Awesome
SIL OFL 1.1 (http://scripts.sil.org/OFL)
MIT License (http://opensource.org/licenses/mit-license.html)
CC BY 3.0 ( http://creativecommons.org/licenses/by/3.0/)
Powered by Worktribe © 2025
Advanced Search