
Vertex Splitting and the Recognition of Trapezoid Graphs

George B. Mertzios∗ Derek G. Corneil†‡

Abstract

Trapezoid graphs are the intersection family of trapezoids where every trapezoid has a
pair of opposite sides lying on two parallel lines. These graphs have received considerable
attention and lie strictly between permutation graphs (where the trapezoids are lines) and
cocomparability graphs (the complement has a transitive orientation). The operation of
“vertex splitting”, introduced in [3], first augments a given graph G and then transforms
the augmented graph by replacing each of the original graph’s vertices by a pair of new
vertices. This “splitted graph” is a permutation graph with special properties if and
only if G is a trapezoid graph. Recently vertex splitting has been used to show that the
recognition problems for both tolerance and bounded tolerance graphs is NP-complete [11].
Unfortunately, the vertex splitting trapezoid graph recognition algorithm presented in [3]
is not correct. In this paper, we present a new way of augmenting the given graph and
using vertex splitting such that the resulting algorithm is simpler and faster than the one
reported in [3].

Keywords: Trapezoid graphs, permutation graphs, recognition, vertex splitting, polyno-
mial algorithm.

1 Introduction

Consider two parallel horizontal lines, L1, the upper line and L2, the lower line. Various inter-
section graphs can be defined on objects formed with respect to these two lines. In particular,
for permutation graphs, the objects are line segments that have one endpoint on L1 and the
other on L2. Generalizing to objects that are trapezoids with one interval on L1 and the op-
posite interval on L2, we define the trapezoid graphs. Between these two classes of graphs lie
the PI (for Point-Interval) graphs where the objects are triangles with one point of the triangle
on L1 and the other two points of the triangle on L2 and PI∗ graphs where again the objects
are triangles, but now there is no restriction on which line contains one point of the triangle
and which line contains two [5]. In particular, permutation graphs are strictly contained in PI
graphs, which are strictly contained in PI∗ graphs, which are strictly contained in trapezoid
graphs; examples illustrating the strict containments are presented in [2]. Note that a similar
definition holds for parallelogram graphs.

The fastest algorithm for determining whether a given graph G is a trapezoid graph, and
finding an intersection representation if G is trapezoid, uses a transitive orientation algorithm
and requires O(n2) time [8]; see [12] for an overview. This algorithm appeared in 1994 and uses
the fact that G is a trapezoid graph if and only if the complement of G has interval dimension 2,
and “takes a transitive orientation algorithm for the complement of G and turns the trapezoid

∗Caesarea Rothschild Institute for Computer Science, University of Haifa, Israel. Email:
mertzios@cs.technion.ac.il
†Department of Computer Science, University of Toronto, Toronto, Canada. Email: dgc@cs.utoronto.ca
‡The second author wishes to thank the Natural Sciences and Engineering Research Council of Canada for

financial assistance.

1

graph recognition problem into a chain cover problem (by way of interval dimension 2)” [12].
In 1996, an O(n3) algorithm appeared [3] that was “conceptually simpler, easier to code and
entirely graph theoretical”. Unfortunately, there are nontrivial errors in [3] (as pointed out
in [10]; see [11]), which seem to permeate the algorithm presented in [3].

The key idea used in [3] is that of “vertex splitting”, which replaces every vertex v of G
with two vertices v1, v2. Intuitively, if G is a trapezoid graph with a representation R, this
splitting can be considered as a replacement of the trapezoid Tv representing v in R by two
trivial trapezoids, namely lines, that represent v1 and v2. Then the given graph G is a trapezoid
graph if and only if the graph G′ produced by vertex splitting is a permutation graph with a
specific property.

Although the algorithm reported in [3] is not correct, the concept of vertex splitting has
been successfully used in [11] where it is shown that the recognition of tolerance and bounded
tolerance graphs is NP-complete, thereby settling a long standing open question. Their proof
uses the fact that a graph is a bounded tolerance graph if and only if it is a parallelogram
graph [1, 7].

In the present paper, although we also use a vertex splitting approach as in [3], we do so in
a very different context. In particular, both before and after splitting we augment the current
graph by adding some new vertices and edges. By doing so, we establish structural properties
that are needed in the trapezoid recognition algorithm. Our algorithm develops a new way of
employing the linear time transitive orientation algorithm of McConnell and Spinrad [9] to show
that the graph constructed by these augmentations and splitting is a permutation graph with
specific properties. Our trapezoid recognition algorithm is simpler than the one reported in [3]
and runs in O(n(n + m)) time rather than O(n3).

The paper is organized as follows. Background definitions and facts about trapezoid graphs
are presented in Section 2, followed by the introduction of Augmentation in Section 3 that adds
four new vertices for each vertex of the given graph G. Once a graph has been augmented, it is
then split (in Section 4), whereby each vertex of the original graph G is replaced with two new
vertices. In Section 5, the notion of “T-orienting” is introduced which plays a key role in the
trapezoid recognition algorithm presented in Section 6. Section 6 also contains the analysis of
the running time of this algorithm, followed by concluding remarks in Section 7.

2 Trapezoid graphs and representations

In this section we investigate several properties of trapezoid graphs and their representations. In
particular, we define the notion of a standard trapezoid representation with respect to a specific
vertex. These properties of trapezoid graphs, as well as the notion of a standard trapezoid
representation will then be used for our trapezoid graph recognition algorithm.

Let R be a trapezoid representation of a trapezoid graph G = (V,E), where for any vertex
u ∈ V , the trapezoid corresponding to u in R is denoted by Tu. Since trapezoid graphs are
also cocomparability graphs (there is a transitive orientation of the complement) [6], we can
define the partial order (V,�R), such that u �R v, or Tu �R Tv, if and only if uv /∈ E and
Tu lies completely to the left of Tv in R. In a given trapezoid representation R of a trapezoid
graph G, we denote by l(Tu) and r(Tu) the left and the right line of Tu in R, respectively.
Similarly, we use the relation �R for the lines l(Tu) and r(Tu), e.g. l(Tu) �R r(Tv) means
that the line l(Tu) lies to the left of the line r(Tv) in R. Moreover, if the trapezoids of all
vertices of a subset S ⊆ V lie completely to the left (resp. right) of the trapezoid Tu in R, we
write R(S) �R Tu (resp. Tu �R R(S)). Note that there are several trapezoid representations
of a particular trapezoid graph G. Given one such representation R, we can obtain another
one R′ by vertical axis flipping of R, i.e. R′ is the mirror image of R along an imaginary line

2

perpendicular to L1 and L2. In the rest of the paper, given a trapezoid representation R, we
will use extensively this operation of vertical axis splitting of R.

In an arbitrary graph G = (V,E), let u ∈ V and U ⊆ V . Then, N(u) = {v ∈ V : uv ∈ E}
is the set of adjacent vertices of u in G, N [u] = N(u) ∪ {u}, and N(U) =

⋃
u∈U N(u) \ U .

If N(U) ⊆ N(W) for two vertex subsets U and W , then U is said to be neighborhood
dominated by W . The relationship of neighborhood domination is clearly transitive. Let
C1, C2, . . . , Cω be the connected components of G \N [u] and Vi = V (Ci), i = 1, 2, . . . , ω. For
simplicity of the presentation, we will identify in the sequel the component Ci and its vertex
set Vi, i = 1, 2, . . . , ω. For i = 1, 2, . . . , ω, the neighborhood domination closure of Vi with re-
spect to u is the set Du(Vi) = {Vp : N(V p) ⊆ N(V i), p = 1, 2, . . . , ω} of connected components
of G \N [u]. The closure complement of the neighborhood domination closure Du(Vi) is the
set D∗u(Vi) = {V1, V2, . . . , Vω} \Du(Vi).

For a subset S ⊆ {V1, V2, . . . , Vω}, a component Vi of S is called maximal, if there is no
component Vj ∈ S, such that N(Vi) ⊂ N(Vj). Furthermore, we denote by V (S) the vertices
of G that belong to the components of S, i.e. V (S) = ∪Vi∈SVi. A connected component Vi

of G \N [u] is called a master component of u, if Vi is a maximal component of {V1, V2, . . . , Vω}.

Lemma 1 Let G be a simple graph, let u be a vertex of G, and let V1, V2, . . . , Vω, ω ≥ 1, be
the connected components of G \N [u]. If Vi is a master component of u, such that D∗u(Vi) 6= ∅,
then D∗u(Vj) 6= ∅ for every component Vj ∈ {V1, V2, . . . , Vω}.

Proof. Since D∗u(Vi) 6= ∅, it follows that Du(Vi) ⊂{V1, V2, . . . , Vω}. Suppose that
there exists a component Vj ∈ {V1, V2, . . . , Vω} \ {Vi}, such that D∗u(Vj) = ∅. Then,
Du(Vi) ⊂ Du(Vj) ={V1, V2, . . . , Vω}, which is a contradiction, since Vi is a master component
of u. Thus, D∗u(Vj) 6= ∅ for every component Vj ∈ {V1, V2, . . . , Vω}.

The following two lemmas will be used in our analysis below.

Lemma 2 Let R be a trapezoid representation of the trapezoid graph G, and let Vi be a master
component of u, such that R(Vi)�RTu. Then, Tu�RR(Vj) for every Vj ∈ D∗u(Vi).

Proof. Suppose otherwise that R(Vj)�RTu, for some Vj ∈ D∗u(Vi). We note that if Vj , Vk are
two arbitrary distinct connected components of G\N [u], then R(Vj) and R(Vk) do not overlap.
First consider the case where R(Vj)�RR(Vi)�RTu. Then, since Vi lies between Vj and Tu in R,
all trapezoids that intersect with Tu and Vj , must also intersect with Vi. Thus, N(Vj) ⊆ N(Vi)
in G, i.e. Vj ∈ Du(Vi), which is a contradiction, since Vj ∈ D∗u(Vi). Consider now the case,
where R(Vi)�RR(Vj)�RTu. Then, we obtain similarly that N(Vi) ⊆ N(Vj) in G, and thus,
N(Vi) = N(Vj), since Vi is a master component of u. However, since Vj ∈ D∗u(Vi), it follows that
N(Vj) * N(Vi), which is a contradiction. Thus, Tu�RR(Vj) for any component Vj of D∗u(Vi).

We caution the reader that D∗u(Vi) = ∅ does not mean that there is a trapezoid representa-
tion R, such that all connected components of G \N [u] lie on the same side of Tu in R. To see
this, consider the trapezoid graph G of Figure 1. In this example, the connected components
of G \ N [u] are V1 = {v1}, V2 = {v2}, and V3 = {v3}. Then, V2 is a master component of u,
since N(V1) = {u1}, N(V2) = {u1, u2}, and N(V3) = {u2}. Now, Du(V2) = {V1, V2, V3} and
D∗u(V2) = ∅, while V1 and V3 must lie on opposite sides of Tu in every trapezoid representation
of G.

Lemma 3 Let R be a trapezoid representation of the trapezoid graph G. Let Vi be a master
component of u and let Vj be a maximal component of D∗u(Vi). Then, N(Vj) = N(V (D∗u(Vi))).

3

u

u1

u2

v1 v2

v3

(a)

L1

L2

Tv1 Tv2 Tu2
Tu1

Tu

Tv3

(b)

Figure 1: (a) A trapezoid graph G and (b) a trapezoid representation of G.

Proof. By possibly performing a vertical axis flipping of R, we may assume without loss of
generality that R(Vi)�RTu. Then, Lemma 2 implies that Tu�RR(D∗u(Vi)), i.e. that the trape-
zoids of every component Vk ∈ D∗u(Vi) lie to the right of Tu in R. Now let Vk be the leftmost
connected component of G\N [u] in R, which lies to the right of Tu in R. That is, for every other
component Vk′ 6= Vk of G \N [u] that lies to the right of Tu in R, we have Tx�RTx′ for all trape-
zoids Tx and Tx′ of Vk and Vk′ , respectively. It is easy to see that N(V`) ⊆ N(Vk), for every
other connected component V` of G \N [u] to the right of Tu in R. Suppose that Vk ∈ Du(Vi).
Then, N(Vk) ⊆ N(Vi), and thus, N(V`) ⊆ N(Vi) for every component V` of G\N [u] to the right
of Tu in R. It follows that V` ∈ Du(Vi) for all these components V`, which is a contradiction, since
in particular Vj ∈ D∗u(Vi) by the assumption. Thus, Vk ∈ D∗u(Vi). Since Tu�RR(Vk)�RR(V`)
for every connected component V` 6= Vk of G \ N [u] to the right of Tu in R, it is easy to see
that N(V`) ⊆ N(Vk), for all such components V`. Thus, Vk is a maximal component of D∗u(Vi),
i.e. N(Vk) = N(V (D∗u(Vi))). Finally, since Vj is also a maximal component of D∗u(Vi), it follows
that N(Vj) = N(Vk), and thus, N(Vj) = N(V (D∗u(Vi))). This proves the lemma.

Let N0(u) = {v ∈ N(u) : N(v) ⊆ N [u]} be the set of neighbors of u that are adjacent only to
neighbors of u and to u itself. If ω = 0, i.e. if V = N [u], then let N1(u) = N2(u) = N12(u) = ∅.
Suppose for the following two definitions that ω ≥ 1. In the rest of the paper, we say that
a vertex v is “adjacent to a connected component Vi of G \ N [u]” if v is adjacent to at least
one vertex of Vi. Similarly, we say that v is “adjacent to the set Du(Vi) (resp. D∗u(Vi)) of
components” if v is adjacent to at least one component Vj ∈ Du(Vi) (resp. Vj ∈ D∗u(Vi)).

Definition 1 Let u be a vertex of a graph G. Let Vi be a master component of u, such
that D∗u(Vi) 6= ∅. Then, the vertices of N(u) \ N0(u) are partitioned into three possibly empty
sets:

1. N1(u): vertices adjacent to Vi and not to D∗u(Vi).

2. N2(u): vertices adjacent to D∗u(Vi) and not to Vi.

3. N12(u): vertices adjacent to both Vi and D∗u(Vi).

Note that every neighbor w ∈ N(u)\N0(u) is adjacent to Du(Vi) or to D∗u(Vi). Furthermore,
every w ∈ N(u)\N0(u) that is adjacent to Du(Vi) is also adjacent to Vi, and thus, in Definition 1,
the sets N1(u), N2(u) and N12(u) indeed partition the set N(u) \N0(u).

Definition 2 Let u be a vertex of a graph G. Let Vi be a master component of u, such that
D∗u(Vi) = ∅. Then, N2(u) = ∅, and the vertices of N(u)\N0(u) are partitioned into two possibly
empty sets:

1. N1(u) = {v ∈ N(Vi) : N0(u) * N(v)}.

4

2. N12(u) = {v ∈ N(Vi) : N0(u) ⊆ N(v)}.

Note that, if D∗u(Vi) = ∅, i.e. if Du(Vi) = {V 1, V2, . . . , Vω}, then every neighbor
w ∈ N(u) \N0(u) is also a neighbor of the component Vi. Thus, in Definition 2, the sets
N1(u) and N12(u) indeed partition the set N(u) \N0(u). Henceforth, any reference to the sets
N1(u), N2(u), N12(u) is understood to be with respect to some master component Vi, cf. Defi-
nitions 1 and 2.

Lemma 4 Let G = (V,E) be a graph, where |V | = n and |E| = m, and let u ∈ V . Then a
master component Vi of u, as well as the related sets N0(u), N1(u), N2(u) and N12(u) can be
computed in O(n + m) time.

Proof. Let V = {v1, v2, . . . , vn} be an enumeration of the vertices of G, such that v1 = u
and the neighbors of u are stored in the first deg(u) positions after v1. That is, v1 = u and
N(u) = {vk : 2 ≤ k ≤ deg(u)+1} in this enumeration. The connected components V1, V2, . . . , Vω

of G \ N [u] can be computed in O(n + m) time by breadth or depth first search. We will use
a linked list to store N(Vj) for each j, and will record |N(Vj)| as vertices are added to N(Vj).
Furthermore, for each vertex v in N(u) we will maintain a linked list of the indices of connected
components, which are adjacent to v, i.e. which contain at least one neighbor of v. Also, each
such list has an end of list pointer as well as a variable len(v) indicating the current length of
the list. After appropriate initializations, we will examine each connected component in order
V1, V2, . . . , Vω and the adjacency list for each vertex in the given connected component. Suppose
we are examining edge vhvk where vh ∈ Vj , 1 ≤ j ≤ ω. If k > deg(u) + 1 (i.e. vk /∈ N(u)), then
ignore this edge; otherwise look at vk’s list. If the last element of this list is not j, then add vk
to N(Vj), increment |N(Vj)|, add j to vk’s list and increment len(vk). Note that all of these
operations can be charged to edges of G, and thus our computation is bounded by O(n + m).

To find a master component Vi it suffices to choose a Vi that maximizes |N(Vj)|, 1 ≤ j ≤ ω.
Furthermore, N0(u) = {v ∈ N(u) : len(v) = 0}. These sets can be computed in O(n) time.

We now compute D∗u(Vi), the indices of connected components not in Du(Vi). First we
create a 0-1 vector of length |N(u)| to store the membership of N(Vi) and allow constant time
determination of membership. Now examine all connected components Vj other than Vi and
scan the N(Vj) list. If at any time an element is encountered that is not in N(Vi) then stop the
scan of the N(Vj) list and place such a j in D∗u(Vi). Again, by charging edges, this can be done
in O(n + m) time.

The set N(D∗u(Vi)) =
⋃

Vj∈D∗u(Vi)
N(Vj) can now be computed in O(n+m) time by scanning

all components whose indices are in D∗u(Vi) and forming a 0-1 vector of length |N(u)| to store
the membership of this set. In the case where D∗u(Vi) 6= ∅, we can now compute the sets N1(u),
N2(u), and N12(u) in O(n) time, since

N1(u) = N(Vi) \N(D∗u(Vi))

N2(u) = N(D∗u(Vi)) \N(Vi)

N12(u) = N(Vi) ∩N(D∗u(Vi))

by Definition 1. Now consider the case where D∗u(Vi) = ∅. Look at all edges vjvk, where
vj ∈ N0(u) and for each such edge (except vju), increment d(vk), initialized to 0 (note that
d(vk) stores |N(vk) ∩N0(u)|). According to Definition 2,

N12(u) = {vk ∈ N(u) : d(vk) = |N0(u)|}
N1(u) = N(Vi) \N12(u)

N2(u) = ∅.

5

This can all be done in O(n + m), thereby completing the lemma.

Now, we define the notion of a standard trapezoid representation with respect to a particular
vertex of a trapezoid graph, which is crucial for our recognition algorithm.

Definition 3 Let G be a trapezoid graph and let u be a vertex of G. A trapezoid representation
R of G is called standard with respect to u, if:

1. the line l(Tu) intersects exactly with the trapezoids of N1(u) ∪N12(u) in R, and

2. the line r(Tu) intersects exactly with the trapezoids of N2(u) ∪N12(u) in R.

Lemma 5 Let G be a trapezoid graph, and let u be a vertex of G. Then, there exists a standard
trapezoid representation of G with respect to u.

Proof. Let R be a trapezoid representation of G. Let V1, V2, . . . , Vω be the connected compo-
nents of G \N [u]. If ω = 0, then V (G) = N [u] and N1(u) = N2(u) = N12(u) = ∅. In this case,
we can move in R the left line l(Tu) (resp. the right line r(Tu)) to the left (resp. right), such that
all endpoints of the trapezoids corresponding to vertices of G \ {u} lie between l(Tu) and r(Tu).
Then, the resulting trapezoid representation R′ satisfies both conditions of Definition 3, and
thus, R′ is a standard trapezoid representation of G with respect to u. Suppose now that ω ≥ 1,
and let Vi be a master component of u. Furthermore let NX(uk), X ∈ {1, 2, 12}, be the sets
defined in Definitions 1 and 2 corresponding to the master component Vi. By possibly perform-
ing a vertical axis flipping of R, we may assume without loss of generality that R(Vi) �R Tu.
Denote by D1(u,R) (resp. D2(u,R)) the set of trapezoids that lie to the left (resp. right) of Tu

in R.
Now consider any connected component Vk of G \N [u], such that R(Vi)�R R(Vk)�R Tu.

We will prove that N(Vi) = N(Vk). Indeed, since Vk lies between Vi and Tu in R, all trapezoids
that intersect with Tu and Vi, must also intersect with Vk, and thus, N(Vi) ⊆ N(Vk). Now,
N(Vi) = N(Vk), since Vi is a master component of u, i.e. we may assume without loss of
generality that Vi is the rightmost component of D1(u,R). Thus, N1(u)∪N12(u) is exactly the
set of neighbors of u, that are adjacent to some trapezoids of D1(u,R).

Denote for the purposes of the proof by px and qx the endpoints on L1 and L2, respectively,
of the left line l(Tx) of an arbitrary trapezoid Tx in R. Suppose that N0(u)∪N2(u) 6= ∅. Let pv
and qw be the leftmost endpoints on L1 and L2, respectively, of the trapezoids of N0(u)∪N2(u),
and suppose that pv < pu and qw < qu. Let v and w be the vertices of N0(u)∪N2(u) that realize
the endpoints pv and qw, respectively. Note that, possibly, v = w. Then, all vertices x, for which
Tx has an endpoint between pv and pu on L1 (resp. between qw and qu on L2) are adjacent to u.
Indeed, suppose otherwise that Tx ∩ Tu = ∅, for such a vertex x. Then, since Tv ∩ Tu 6= ∅
(resp. Tw ∩Tu 6= ∅), it follows that Tx ∩Tv 6= ∅ (resp. Tx ∩Tw 6= ∅). However, since Tx ∩Tu = ∅,
and since Tx has an endpoint to the left of Tu in R, it follows that Tx �R Tu, i.e. Tx ∈ D1(u,R),
and thus, v ∈ N1(u) ∪N12(u) (resp. w ∈ N1(u) ∪N12(u)), which is a contradiction.

We now construct a trapezoid representation R′ of G from R, by moving both endpoints pu
and qu of l(Tu) directly before pv and qw on L1 and L2, respectively. Then, all trapezoids that
correspond to vertices of N0(u)∪N2(u) lie to the right of the line l(Tu) in R′. Since u is adjacent
to all vertices x, for which Tx has an endpoint between pv and pu on L1, or between qw and
qu on L2 in R, the resulting representation R′ is a trapezoid representation of G. Furthermore,
since the trapezoids of N1(u)∪N12(u) intersect with Tu and with some trapezoids of D1(u,R),
they must intersect with the line l(Tu), and thus, the first condition of Definition 3 is satisfied.
Note that, in the case where pv > pu (resp. qw > qu), we do not move the point pu (resp. qu)
in the above construction, while in the case where N0(u) ∪ N2(u) = ∅, we define R′ = R. An

6

example of the construction of R′ for the case where D∗u(Vi) 6= ∅ is given in Figure 2 (for the case
where D∗u(Vi) = ∅, the construction of R′ is the same). In this example, v ∈ N0(u), w ∈ N2(u),
z ∈ N1(u), and y ∈ N12(u).

pu

qu

Tu

pv

qw
L2

L1

pz

qz

Vi

D∗
u(Vi)R :

Ty

(a)

pu

qu

pv

qw
L2

L1

pz

qz

Vi

R′ :

Tu

D∗u(Vi)
Ty

(b)

Figure 2: The movement of the left line l(Tu) of the trapezoid Tu to the left, in the case where
D∗u(Vi) 6= ∅, in order to construct the trapezoid representation R′ from R.

Recall that R′ satisfies the first condition of Definition 3. In the following, we con-
struct another trapezoid representation R′′ (resp. R′′′) from R′ in the case where D∗u(Vi) 6= ∅
(resp. D∗u(Vi) = ∅), which also satisfies the second condition of Definition 3. Thus, R′′ (resp. R′′′)
is a standard trapezoid representation of G with respect to u.

Suppose first that D∗u(Vi) 6= ∅, and let Vj be a maximal component of D∗u(Vi). Due to
Lemma 3, N(Vj) = N(D∗u(Vi)), i.e. N2(u) ∪ N12(u) is exactly the set of neighbors of u, that
are adjacent to some trapezoids of D2(u,R). If R′ is not a standard trapezoid representation
with respect to u, then we move (similarly to the construction of R′ from R) the right line
r(Tu) of Tu to the right, thus obtaining a trapezoid representation R′′ of G, in which the second
condition of Definition 3 is satisfied. Since, during the construction of R′′ by R′, only the line
r(Tu) is possibly moved to the right, the first condition of Definition 3 is satisfied for R′′ as well.
Thus, R′′ is a standard representation of G with respect to u.

Suppose now that D∗u(Vi) = ∅. Then, N2(u) = ∅ by Definition 2. Similarly to the construc-
tion of the trapezoid representation R′ from R, we move in R′ the right line r(Tu) possibly to
the right, directly after the endpoints of the trapezoids of N0(u) on L1 and L2. The resulting
trapezoid representation R′′ of G satisfies the first condition of Definition 3, while all trapezoids
that correspond to vertices of N0(u) lie to the left of the line r(Tu) in R′′. Since R′′(Vi)�R′′ Tu,
and due to Definition 2, for every vertex v ∈ N1(u) there exists at least one vertex w ∈ N0(u),
such that Tv �R′′ Tw. Thus, since R′′(N0(u)) �R′′ r(Tu), it follows that Tv �R′′ r(Tu) for
every vertex v ∈ N1(u).

Furthermore, due to Definition 2, N0(u) ⊆ N(v) for every vertex v ∈ N12(u). Now consider
a vertex v ∈ N12(u) and a vertex z ∈ N(Vi), such that Tv �R′′ Tz. Suppose, for the sake
of contradiction, that N0(u) * N(z). Then, since R′′(Vi) �R′′ Tu, there exists a vertex w ∈
N0(u), such that Tz �R′′ Tw. Thus, since Tv �R′′ Tz, it follows that Tv �R′′ Tw. This is
a contradiction, since every vertex v ∈ N12(u) is adjacent to all vertices w ∈ N0(u). Thus,
N0(u) ⊆ N(z), i.e. z ∈ N12(u). Therefore, we can move the endpoints of the trapezoids of

7

N12(u) appropriately to the right, such that they all intersect the line r(Tu), and such that
no new adjacency is introduced and all old adjacencies are preserved. The resulting trapezoid
representation R′′′ of G satisfies both conditions of Definition 3, and thus, R′′′ is a standard
representation of G with respect to u. An example of the construction of R′′′ from R′′ is given
in Figure 3. In this example, w,w′ ∈ N0(u), x ∈ N1(u), and v, z ∈ N12(u).

3 An augmenting algorithm

In this section we present Algorithm Augment-All, which takes as input an arbitrary undirected
graph G with n vertices and augments it to a graph G∗ with 5n vertices. The constructed
graph G∗ has the property (see Lemma 11) that for every vertex ui, i = 1, 2, . . . , n, of the
original graph G, there exists a master component Vj of ui in G∗ such that D∗ui

(Vj) 6= ∅. The
graph G∗ will serve as the basis for the vertex splitting described in the next section. We now
define the augmented graph G∗(ui) for an arbitrary graph G and a vertex ui of G.

Definition 4 Let ui be a vertex of a graph G. The augmented graph G∗(ui) of G with respect
to ui is defined as follows:

1. V (G∗(ui)) = V (G) ∪ {ui,1, ui,2, ui,3, ui,4},

2. E(G∗(ui)) = E(G)∪{uiui,1, ui,1ui,2, uiui,3, ui,3ui,4}∪{ui,1x, ui,2x : x ∈ N1(ui)∪N12(ui)}∪
{ui,3x, ui,4x : x ∈ N2(ui) ∪N12(ui)}.

The vertices ui,1, ui,2, ui,3, ui,4 are the augmenting vertices of ui.

Note that, by Definition 4, {ui,2} and {ui,4} are two connected components of G∗(ui) \
NG∗(ui)[ui].

Lemma 6 Let G be an arbitrary graph and let ui be a vertex of G. The graph G∗(ui) is trapezoid
if and only if G is trapezoid.

L2

L1

Vi

TzTv
Tw Tw′

Tx

R′′ :

Tu

(a)

Tu

L2

L1

Vi

TzTv

Tw

Tw′

Tx

R′′′

(b)

Figure 3: The movement of the endpoints of the trapezoids of N12(u) to the right, in the case
where D∗u(Vi) = ∅, in order to construct the trapezoid representation R′′′ from R′′.

8

Proof. Suppose that G∗(ui) is a trapezoid graph. Then, since G is an induced subgraph
of G∗(ui), and since the trapezoid property is hereditary, it follows that G is a trapezoid graph
as well.

Now suppose that G is a trapezoid graph. Then, by Lemma 5 there exists a standard
trapezoid representation R of G with respect to ui. Therefore, it follows by Definition 3 that
the left line l(Tui) of Tui intersects exactly with the trapezoids of N1(ui) ∪N12(ui) in R, while
the right line r(Tui) of Tui intersects exactly with the trapezoids of N2(ui) ∪ N12(ui) in R.
We can add to R four trivial trapezoids (i.e. lines) `(ui,1), `(ui,2), `(ui,3) and `(ui,4), as fol-
lows: `(ui,2) (resp. `(ui,4)) is parallel to l(Tui) (resp. to r(Tui)) to its left (resp. right), and
lies arbitrarily close to l(Tui) (resp. to r(Tui)). Furthermore, `(ui,1) (resp. `(ui,3)) intersects
both l(Tui) and `(ui,2) (resp. both r(Tui) and `(ui,4)), and lies arbitrarily close to them.

An example of this construction is illustrated in Figure 4. Note that, in the resulting trape-
zoid representation, the line `(ui,2) (resp. the line `(ui,4)) intersects with exactly the same
trapezoids as the left line l(Tui) (resp. the right line r(Tui)) of Tui . That is, `(ui,2) (resp. `(ui,4))
intersects with `(ui,1) (resp. with `(ui,3)), as well as with the trapezoids of N1(ui) ∪ N12(ui)
(resp. with the trapezoids of N2(ui) ∪ N12(ui)). Furthermore, recall by construction that
the line `(ui,1) (resp. `(ui,3)) lies arbitrarily close to the lines l(Tui) and `(ui,2) (resp. to the
lines r(Tui) and `(ui,4)). Therefore, in the resulting trapezoid representation, `(ui,1) intersects
with l(Tui) and `(ui,2), as well as with the trapezoids of N1(ui) ∪ N12(ui). Similarly, `(ui,3)
intersects with r(Tui) and `(ui,4), as well as with the trapezoids of N2(ui) ∪ N12(ui). Thus, it
follows by Definition 4 that the resulting representation is a trapezoid representation of G∗(ui),
and thus G∗(ui) is a trapezoid graph. This completes the proof of the lemma.

ui,1ui,2 ui,3 ui,4

L1

L2

r(Tui
)l(Tui

)

Tui

Figure 4: The augmentation of the vertex ui of G in the augmented graph G∗(ui).

Lemma 7 Let ui be a vertex of a graph G. Then, {ui,2} and {ui,4} are master components of
ui in G∗(ui). Furthermore, D∗ui

({ui,2}) 6= ∅ and D∗ui
({ui,4}) 6= ∅ in G∗(ui).

Proof. For simplicity reasons, in the proof we will denote the neighborhood NG∗(ui)(U) of a
vertex set U in G∗(ui) by N(U). Let V1, V2, . . . , Vω be the connected components of G \NG[ui].
The connected components of G∗(ui) \ N [ui] are {ui,2}, {ui,4}, V1, V2, . . . , Vω. Suppose that
{ui,2} (resp. {ui,4}) is not a master component of ui in G∗(ui). Then, there exists a con-
nected component V0 of G∗(ui)\N [ui], such that N({ui,2}) ⊂ N(V0) (resp. N({ui,4}) ⊂ N(V0)),
and thus, ui,1 ∈ N(V0) (resp. ui,3 ∈ N(V0)). By the construction of G∗(ui), there exists
no connected component V0 ∈ {V1, V2, . . . , Vω, {ui,4}}, such that ui,1 ∈ N(V0). Similarly,
there exists no connected component V0 ∈ {V1, V2, . . . , Vω, {ui,2}}, such that ui,3 ∈ N(V0),
which is a contradiction. Thus, {ui,2} and {ui,4} are master components of ui in G∗(ui).
Finally, since ui,1 ∈ N({ui,2}) \ N({ui,4}) and ui,3 ∈ N({ui,4}) \ N({ui,2}), it follows that
{ui,4} ∈ D∗ui

({ui,2}) 6= ∅ and that {ui,2} ∈ D∗ui
({ui,4}) 6= ∅ in G∗(ui). This proves the lemma.

9

After augmenting a vertex ui of G, obtaining the graph G∗(ui), we can continue by aug-
menting an arbitrary vertex of V (G) \ {ui} in G∗(ui). This process can be repeated |V (G)|
times, until all vertices of V (G) have been augmented, as presented in Algorithm Augment-All.
The resulting graph G∗ has 5|V (G)| vertices, since at every iteration of Algorithm Augment-All
we add four new augmenting vertices. Note that in this algorithm, we choose an arbitrary
ordering by which we augment the vertices of V (G). It is worth mentioning here that, using
different such orderings, Algorithm Augment-All may produce different augmented graphs G∗.
However, we will prove that for any of these orderings, the resulting graph G∗ satisfies some
special properties (cf. Lemmas 9, 10, and 11) that will be used in Section 4 in order to prove
the correctness of Algorithm Split-All.

Algorithm 1 Augment-All

Input: A graph G with vertex set V = {u1, u2, . . . , un}
Output: Augment every vertex of V to produce G∗

1: G0 ← G
2: for i = 1 to n do
3: Gi ← G∗i−1(ui) {Gi is obtained by augmenting the vertex ui of Gi−1}
4: G∗ ← Gn

5: return G∗

At every step of Algorithm Augment-All, the graph Gi has, by Definition 4, four more
vertices ui,1, ui,2, ui,3, ui,4 than the previous graph Gi−1. Each of these four new vertices has
at most |NGi−1(ui)| + 2 neighbors in Gi, while ui has exactly |NGi−1(ui)| + 2 neighbors in Gi.
Thus, in the graph G∗ = Gn returned by Algorithm Augment-All, every vertex ui of the input
graph G has been replaced by an induced path (ui,2, ui,1, ui, ui,3, ui,4), while every edge uiuj
of the input graph G has been replaced by at most 5 · 5 = 25 edges, i.e. at most all possible
edges with one endpoint in {ui, ui,1, ui,2, ui,3, ui,4} and one endpoint in {uj , uj,1, uj,2, uj,3, uj,4}.
Summarizing, the graph G∗ = Gn returned by Algorithm Augment-All has O(n) vertices and
O(m) edges, and thus the same holds for every intermediate graph Gi, i = 1, 2, . . . , n. Therefore,
since by Lemma 4 the sets N0, N1, N2, and N12 for a graph with n vertices and m edges can
be computed in O(n + m) time, the next lemma follows.

Lemma 8 Algorithm 1 runs in O(n(n + m)) time.

The following corollary easily follows by repeatedly applying Lemma 6.

Corollary 1 The graph G∗ constructed by Algorithm Augment-All is trapezoid if and only if
the input graph G is trapezoid.

We now show that in any iteration of Algorithm Augment-All after the ith one, if a vertex is
made adjacent to ui,2 it is also made adjacent to ui,1; furthermore, if a vertex is made adjacent
to ui,1 it is also made adjacent to ui and to ui,2.

Lemma 9 Let ui be a vertex of a graph G, and let Gk be the graph constructed at the kth step
of Algorithm Augment-All, where k ≥ i, (i.e. after augmenting vertex ui). Then,

• NGk
[ui,2] = NGk

[ui,1] \{ui}

• NGk
[ui,1] \ {ui,2} ⊆ NGk

[ui].

10

Proof. The lemma will be proved by induction on k. For k = i the lemma clearly holds,
due to the construction of the augmented graph Gi from Gi−1. Suppose that NGk−1

[ui,2] =
NGk−1

[ui,1] \ {ui} and that NGk−1
[ui,1] \ {ui,2} ⊆ NGk−1

[ui], for some k ≥ i + 1. Consider the
construction of the augmented graph Gk from Gk−1 at the kth step of Algorithm Augment-All.
Let Vj be a master component of uk in Gk−1, and let NX(uk), X ∈ {1, 2, 12}, be the sets defined
in Definitions 1 and 2 corresponding to the master component Vj .

Case 1. D∗uk
(Vj) 6= ∅ in Gk−1 (cf. Definition 1). Suppose that ui,2 is adjacent in Gk to uk,1

and uk,2 (resp. uk,3 and uk,4), i.e. that ui,2 ∈ N1(uk) ∪N12(uk) (resp. ui,2 ∈ N2(uk) ∪N12(uk))
in Gk−1. Then, ui,2 is adjacent in Gk−1 to uk and to at least one vertex v that belongs
to a connected component of Gk−1 \ NGk−1

[uk], i.e. uk, v ∈ NGk−1
(ui,2). It follows by the

induction hypothesis that uk, v ∈ NGk−1
[ui,1], and thus, ui,1 ∈ N1(uk) ∪ N12(uk) (resp. ui,1 ∈

N2(uk) ∪ N12(uk)) in Gk−1. Therefore, ui,1 is adjacent in Gk to uk,1 and uk,2 (resp. uk,3 and
uk,4) as well. Thus, NGk

[ui,2] ⊆ NGk
[ui,1] \{ui}.

Now we show that NGk
[ui,1] \ {ui} ⊆ NGk

[ui,2]. Suppose that ui,1 is adjacent in Gk to uk,1
and uk,2 (resp. uk,3 and uk,4), i.e. that ui,1 ∈ N1(uk)∪N12(uk) (resp. ui,1 ∈ N2(uk)∪N12(uk)) in
Gk−1. Then, similarly to the previous paragraph, ui,1 is adjacent in Gk−1 to uk and to at least
one vertex v that belongs to a connected component of Gk−1\NGk−1

[uk], i.e. uk, v ∈ NGk−1
(ui,1).

Since NGk−1
[ui,1]\{ui,2} ⊆ NGk−1

[ui], and since ui,2 6= uk, it follows that uk ∈ NGk−1
(ui). Thus,

ui 6= v, i.e. uk, v ∈ NGk−1
[ui,1] \ {ui}. Therefore, it follows by the induction hypothesis that

uk, v ∈ NGk−1
[ui,2], and thus, ui,2 ∈ N1(uk) ∪N12(uk) (resp. ui,2 ∈ N2(uk) ∪N12(uk)) in Gk−1.

Therefore, ui,2 is adjacent in Gk to uk,1 and uk,2 (resp. uk,3 and uk,4) as well. Thus, NGk
[ui,1]

\{ui} ⊆ NGk
[ui,2]. Summarizing, we obtain that NGk

[ui,2] = NGk
[ui,1] \{ui} for the case where

D∗uk
(Vj) 6= ∅.
Furthermore, since uk, v ∈ NGk−1

[ui,2], it follows that ui,2 /∈ {uk, v}. Thus, uk, v ∈ NGk
[ui,1]\

{ui,2} ⊆ NGk
[ui], and thus, ui ∈ N1(uk) ∪ N12(uk) (resp. ui ∈ N2(uk) ∪ N12(uk)) in Gk−1.

Therefore, ui is adjacent in Gk to uk,1 and uk,2 (resp. uk,3 and uk,4) as well, i.e. NGk
[ui,1]\{ui,2} ⊆

NGk
[ui]. This completes the induction step for the case where D∗uk

(Vj) 6= ∅.
Case 2. D∗uk

(Vj) = ∅ in Gk−1 (cf. Definition 2). Then, N2(uk) = ∅ in Gk−1. First suppose
that ui,2 is adjacent in Gk to uk,1 and uk,2, i.e. ui,2 ∈ N1(uk) ∪N12(uk) = NGk−1

(uk) \N0(uk)
in Gk−1. Then, ui,2 is adjacent in Gk−1 to uk and to at least one vertex v that belongs to
the master component Vj of uk. Thus, since uk, v ∈ NGk−1

(ui,2), it follows by the induction
hypothesis that uk, v ∈ NGk−1

[ui,1], and thus ui,1 ∈ NGk−1
(uk) \ N0(uk) = N1(uk) ∪ N12(uk)

in Gk−1. Hence, ui,1 is adjacent in Gk to uk,1 and uk,2 as well.
Now suppose that ui,2 is adjacent in Gk to uk,3 and uk,4, i.e. ui,2 ∈ N12(uk) ⊆ NGk−1

(uk) \
N0(uk) in Gk−1. Similarly to the previous paragraph, ui,1 ∈ NGk−1

(uk) \ N0(uk) = N1(uk) ∪
N12(uk) in Gk−1 as well. Furthermore, since ui,2 ∈ N12(uk), it follows by Definition 2 and
by the induction hypothesis that N0(uk) ⊆ NGk−1

(ui,2) ⊆ NGk−1
[ui,1]. Since ui,1 /∈ N0(uk),

N0(uk) ⊆ NGk−1
(ui,1), and therefore, ui,1 is adjacent in Gk to uk,3 and uk,4 as well. Summarizing,

we see that NGk
[ui,2] ⊆ NGk

[ui,1] \{ui}.
Suppose that ui,1 is adjacent in Gk to uk,1 and uk,2, i.e. that ui,1 ∈ N1(uk)∪N12(uk) in Gk−1.

Then, ui,1 is adjacent in Gk−1 to uk and to at least one vertex v that belongs to the master
component Vj of uk, i.e. uk, v ∈ NGk−1

(ui,1). Since NGk−1
[ui,1] \ {ui,2} ⊆ NGk−1

[ui], and since
ui,2 6= uk, it follows that uk ∈ NGk−1

(ui). Thus, ui 6= v, i.e. uk, v ∈ NGk−1
[ui,1] \ {ui} =

NGk−1
[ui,2]. It follows that ui,2 ∈ NGk−1

(uk) \N0(uk) = N1(uk) ∪N12(uk) in Gk−1. Hence, ui,2
is adjacent in Gk to uk,1 and uk,2 as well. Furthermore, since uk, v ∈ NGk−1

[ui,2], it follows that
ui,2 /∈ {uk, v}. Thus, uk, v ∈ NGk

[ui,1] \ {ui,2} ⊆ NGk
[ui], and thus, ui ∈ NGk−1

(uk) \N0(uk) =
N1(uk) ∪N12(uk) in Gk−1. Hence, ui is adjacent in Gk to uk,1 and uk,2 as well.

Now suppose that ui,1 is adjacent in Gk to uk,3 and uk,4, i.e. that ui,1 ∈ N12(uk) ⊆
NGk−1

(uk) \ N0(uk) in Gk−1. Similarly to the previous paragraph, ui,2, ui ∈ NGk−1
(uk) \

11

N0(uk) = N1(uk) ∪ N12(uk) in Gk−1 as well. Furthermore, it follows by Definition 2 that
N0(uk) ⊆ NGk−1

(ui,1). By the induction hypothesis, and since ui,2, ui /∈ N0(uk), we see that
N0(uk) ⊆ NGk−1

[ui,1] \ {ui} = NGk−1
[ui,2] and N0(uk) ⊆ NGk−1

[ui,1] \ {ui,2} ⊆ NGk−1
[ui]. That

is, N0(uk) ⊆ NGk−1
(ui,2) and N0(uk) ⊆ NGk−1

(ui). Therefore, ui,2, ui ∈ N12(uk) in Gk−1,
i.e. ui,2 and ui are adjacent in Gk to uk,3 and uk,4 as well. Summarizing, we have shown that
NGk

[ui,2] = NGk
[ui,1] \{ui} and NGk

[ui,1] \ {ui,2} ⊆ NGk
[ui]. This proves the induction step in

the case where D∗uk
(Vj) = ∅.

The following lemma is symmetric to Lemma 9.

Lemma 10 Let ui be a vertex of a graph G, and let Gk be the graph constructed at the kth step
of Algorithm Augment-All, where k ≥ i, i.e. after augmenting vertex ui. Then,

• NGk
[ui,4] = NGk

[ui,3] \{ui}

• NGk
[ui,3] \ {ui,4} ⊆ NGk

[ui].

We can now obtain the following lemma, which extends Lemma 7.

Lemma 11 Let ui be a vertex of a graph G. Then, {ui,2} and {ui,4} are master components
of ui in G∗. Furthermore, D∗ui

({ui,2}) 6= ∅ and D∗ui
({ui,4}) 6= ∅ in G∗.

Proof. Consider the graph G∗ = Gn computed by Algorithm Augment-All, and let ui be
a vertex of G. For simplicity reasons, in the proof we will denote the neighborhood NG∗(U)
of a vertex set U in G∗ by N(U). Suppose first that {ui,2} (resp. {ui,4}) is not a connected
component of G∗ \N [ui]. Then, since ui,2 (resp. ui,4) is not adjacent to ui in G∗, there must be
at least one vertex v of G∗, that is adjacent to ui,2 (resp. ui,4) and not to ui in G∗. However,
since v /∈ {ui, ui,2, ui,4}, and since v ∈ N [ui,2] (resp. v ∈ N [ui,4]), it follows by Lemma 9
(resp. Lemma 10) that v ∈ N [ui,1] \ {ui, ui,2} ⊆ N [ui] (resp. v ∈ N [ui,3] \ {ui, ui,4} ⊆ N [ui]),
i.e. that v is adjacent to ui in G∗, which is a contradiction. Thus, {ui,2} (resp. {ui,4}) is a
connected component of G∗ \N [ui].

Now suppose that {ui,2} (resp. {ui,4}) is not a master component of ui in G∗. Then,
there exists a connected component V0 6= {ui,2} (resp. V0 6= {ui,4}) of G∗ \ N [ui],
such that N({ui,2}) ⊂ N(V0) (resp. N({ui,4}) ⊂ N(V0)). Therefore, ui,1 ∈ N(V0)
(resp. ui,3 ∈ N(V0)), i.e. there exists a vertex v ∈ V0, such that v ∈ N [ui,1] (resp. v ∈
N [ui,3]). Thus, since v 6= ui,2 (resp. v 6= ui,4), Lemma 9 (resp. Lemma 10) im-
plies that v ∈ N [ui], i.e. V0 is not a connected component of G∗ \ N [ui], which is a
contradiction. Thus, {ui,2} (resp. {ui,4}) is a master component of ui in G∗. Fur-
thermore, since ui,1 ∈ N({ui,2}) \N({ui,4}) and ui,3 ∈ N({ui,4}) \N({ui,2}), it follows that
{ui,4} ∈ D∗ui

({ui,2}) 6= ∅ and that {ui,2} ∈ D∗ui
({ui,4}) 6= ∅ in G∗. This completes the lemma.

4 The splitting of a trapezoid graph

In this section we present Algorithm Split-All, which takes as input the augmented graph G∗

with 5n vertices computed by the Algorithm Augment-All from the input graph G, and computes
the graph G# with 6n vertices. This algorithm replaces every vertex of the input graph G by a
pair of new vertices in G#. If the input graph G is trapezoid, then G# is a permutation graph
with a special structural property.

12

4.1 A splitting algorithm

In the following definition we state the notion of splitting a vertex in the augmented graph G∗

constructed by Algorithm Augment-All. The intuition behind this definition is the following.
If G is a trapezoid graph with n vertices, then G∗ is a trapezoid graph with 5n vertices. Given
a standard trapezoid representation R∗ of G∗ with respect to a vertex ui ∈ V (G) ⊂ V (G∗),
we replace the trapezoid Tui by the two trivial trapezoids in R∗, i.e. lines, l(Tui) and r(Tui).
The two new vertices corresponding to the lines l(Tui) and r(Tui) are denoted by ui,5 and ui,6,
respectively.

Definition 5 Let: G be a graph; G∗ be the augmented graph constructed by Algorithm Augment-
All from G; ui ∈ V (G) ⊂ V (G∗); and the sets NX(ui) be defined by Definition 1 with respect to
the master component {ui,2} of ui in G∗, where X ∈ {1, 2, 12}. The graph G#(ui) obtained by
the vertex splitting of ui in G∗ is defined as follows:

1. V (G#(ui)) = V (G∗) \ {ui} ∪ {ui,5, ui,6},

2. E(G#(ui)) = E[V (G∗) \ {ui}] ∪ {ui,5x : x ∈ N1(ui) ∪ N12(ui)} ∪ {ui,6x : x ∈ N2(ui) ∪
N12(ui)}.

The vertices ui,5 and ui,6 are the derivatives of ui.

After performing the splitting of a vertex ui of G, obtaining the graph G#(ui), we can
continue by splitting an arbitrary vertex vj of V (G) \ {ui} in G#(ui). (Note that to do this
further splitting, {uj,2}must still be a master component in G#(ui); this is proved in Lemma 15.)
This process can be repeated |V (G)| times, such that finally all vertices of V (G) have been
split, as presented in Algorithm Split-All. Note that, similarly to Algorithm Augment-All,
also in this algorithm we choose an arbitrary ordering by which we split the vertices of V (G).
However, given the graph G∗ as input, the graph G# computed by Algorithm Split-All is the
same for any of these orderings. Intuitively, in a trapezoid representation of the augmented
graph G∗, every trapezoid Tui is replaced by its two lines `(ui,5) and `(ui,6), which intersect
in the resulting trapezoid representation exactly with the same trapezoids as the lines `(ui,2)
and `(ui,4), respectively.

Algorithm 2 Split-All

Input: The graph G∗ constructed by Algorithm Augment-All from G, where
V (G) = {u1, u2, . . . , un}

Output: The graph G# obtained by splitting every vertex of V (G) in G∗; also, the initial
values of the sets N̂i, i = 1, 2, . . . , n, which will be used in Algorithm 3

1: H0 ← G∗

2: for i = 1 to n do
3: Hi ← H#

i−1(ui) {Hi is obtained by the vertex splitting of ui of Hi−1}
4: N̂i ← N0(ui) in Hi−1 {these sets will be used in Algorithm 3}
5: G# ← Hn

6: return G#, {N̂i, 1 ≤ i ≤ n}

At every step of Algorithm Split-All, the vertex ui of the graph Hi−1 is replaced by its two
derivatives ui,5, ui,6 in Hi by Definition 5. Therefore, since the input graph G∗ has 5n vertices,
the graph G# = Hn returned by Algorithm Split-All has in total 6n vertices. At the ith step
of the algorithm, each of the two new vertices ui,5, ui,6 of Hi has at most |NHi−1(ui)| neighbors

13

in Hi. Since at every step of Algorithm Split-All, one vertex is replaced by two new ones, the
number of edges in the graph G# = Hn returned by the algorithm is not greater than four times
the number of edges in the input graph G∗. Thus, since the input graph G∗ has O(m) edges,
the resulting graph G# also has in total O(m) edges. Therefore, since by Lemma 4 the sets N0,
N1, N2, and N12 for a graph with n vertices and m edges can be computed in O(n + m) time,
the next lemma follows similarly to Lemma 8.

Lemma 12 Algorithm Split-All runs in O(n(n + m)) time.

Similarly to Lemma 9, we obtain the following lemma.

Lemma 13 Let ui be a vertex of a graph G, and let Hk be the graph constructed at the kth step
of Algorithm Split-All, where 0 ≤ k ≤ i− 1, i.e. before the splitting of vertex ui. Then

• NHk
[ui,2] = NHk

[ui,1] \{ui}

• NHk
[ui,1] \ {ui,2} ⊆ NHk

[ui].

Proof. The lemma will be proved by induction on k. For k = 0 the lemma clearly holds
due to Lemma 9, and since H0 = G∗ = Gn. Suppose that NHk

[ui,2] = NHk
[ui,1] \{ui} and

NHk−1
[ui,1] \ {ui,2} ⊆ NHk−1

[ui], for some 1 ≤ k ≤ i − 1, i.e. before the splitting of vertex ui.
Consider the construction of the splitted graph Hk from Hk−1 at the kth step of Algorithm
Split-All; Hk has the new vertices uk,5, uk,6 instead of the vertex uk in Hk−1. Similarly to the
proof of Lemma 9, let Vj be a master component of uk in Hk−1, and let NX(uk), X ∈ {1, 2, 12},
be the sets defined in Definitions 1 and 2 corresponding to the master component Vj .

Case 1. D∗uk
(Vj) 6= ∅ in Hk−1 (cf. Definition 1). Suppose that ui,2 is adjacent in Hk to

uk,5 (resp. uk,6), i.e. that ui,2 ∈ N1(uk) ∪ N12(uk) (resp. ui,2 ∈ N2(uk) ∪ N12(uk)) in Hk−1.
Then, ui,2 is adjacent in Hk−1 to uk and to at least one vertex v that belongs to a connected
component of Hk−1 \NHk−1

[uk], i.e. uk, v ∈ NHk−1
(ui,2). It follows by the induction hypothesis

that uk, v ∈ NHk−1
[ui,1], and thus, ui,1 ∈ N1(uk) ∪ N12(uk) (resp. ui,1 ∈ N2(uk) ∪ N12(uk)) in

Hk−1. Therefore, ui,1 is adjacent in Hk to uk,5 (resp. uk,6) as well. Thus, NHk
[ui,2] ⊆ NHk

[ui,1]
\{ui}.

To prove the other direction of this set inclusion, we first suppose that ui,1 is adjacent in Hk

to uk,5 (resp. uk,6), i.e. that ui,1 ∈ N1(uk) ∪ N12(uk) (resp. ui,1 ∈ N2(uk) ∪ N12(uk)) in Hk−1.
Then, similarly to the previous paragraph, ui,1 is adjacent in Hk−1 to uk and to at least one
vertex v that belongs to a connected component of Hk−1 \NHk−1

[uk], i.e. uk, v ∈ NHk−1
(ui,1).

Since NHk−1
[ui,1]\{ui,2} ⊆ NHk−1

[ui], and since ui,2 6= uk, it follows that uk ∈ NHk−1
(ui). Thus,

ui 6= v, i.e. uk, v ∈ NHk−1
[ui,1] \ {ui}. Therefore, it follows by the induction hypothesis that

uk, v ∈ NHk−1
[ui,2], and thus, ui,2 ∈ N1(uk) ∪N12(uk) (resp. ui,2 ∈ N2(uk) ∪N12(uk)) in Hk−1.

Therefore, ui,2 is adjacent in Hk to uk,5 (resp. uk,6) as well. Thus, NHk
[ui,1] \{ui} ⊆ NHk

[ui,2].
Summarizing, NHk

[ui,2] = NHk
[ui,1] \{ui} for the case where D∗uk

(Vj) 6= ∅.
Furthermore, since uk, v ∈ NHk−1

[ui,2], it follows that ui,2 /∈ {uk, v}. Thus uk, v ∈ NHk
[ui,1]\

{ui,2} ⊆ NHk
[ui], and thus ui ∈ N1(uk) ∪ N12(uk) (resp. ui ∈ N2(uk) ∪ N12(uk)) in Hk−1.

Therefore ui is adjacent in Hk to uk,5 (resp. uk,6) as well, i.e. NHk
[ui,1] \ {ui,2} ⊆ NHk

[ui]. This
completes the induction step for the case where D∗uk

(Vj) 6= ∅.
Case 2. D∗uk

(Vj) = ∅ in Hk−1 (cf. Definition 2). Then, N2(uk) = ∅ in Hk−1. First suppose
that ui,2 is adjacent in Hk to uk,5, i.e. ui,2 ∈ N1(uk) ∪N12(uk) = NHk−1

(uk) \N0(uk) in Hk−1.
Then, ui,2 is adjacent in Hk−1 to uk and to at least one vertex v that belongs to the master
component Vj of uk. Thus, since uk, v ∈ NHk−1

[ui,2], it follows by the induction hypothesis that
uk, v ∈ NHk−1

[ui,1], and thus ui,1 ∈ NHk−1
(uk) \N0(uk) = N1(uk) ∪N12(uk) in Hk−1. Hence ui

is adjacent in Hk to uk,5 as well.

14

Now suppose that ui,2 is adjacent in Hk to uk,6, i.e. ui,2 ∈ N12(uk) ⊆ NHk−1
(uk) \ N0(uk)

in Hk−1. Similarly to the previous paragraph, ui,1 ∈ NHk−1
(uk) \ N0(uk) = N1(uk) ∪ N12(uk)

in Hk−1 as well. Furthermore, since ui,2 ∈ N12(uk), it follows by Definition 2 and by the
induction hypothesis that N0(uk) ⊆ NHk−1

(ui,2) ⊆ NHk−1
[ui,1]. Since ui,1 /∈ N0(uk), N0(uk) ⊆

NHk−1
(ui,1), and therefore, ui,1 is adjacent in Hk to uk,6 as well. Summarizing, NHk

[ui,2] ⊆
NHk

[ui,1] \{ui}.
Suppose that ui,1 is adjacent in Hk to uk,5, i.e. that ui,1 ∈ N1(uk)∪N12(uk) in Hk−1. Then

ui,1 is adjacent in Hk−1 to uk and to at least one vertex v that belongs to the master component
Vj of uk, i.e. uk, v ∈ NHk−1

(ui,1). Since NHk−1
[ui,1] \ {ui,2} ⊆ NHk−1

[ui], and since ui,2 6= uk, it
follows that uk ∈ NHk−1

(ui). Thus ui 6= v, i.e. uk, v ∈ NHk−1
[ui,1] \ {ui} = NHk−1

[ui,2] by the
induction hypothesis. It follows that ui,2 ∈ NHk−1

(uk) \ N0(uk) = N1(uk) ∪ N12(uk) in Hk−1.
Hence ui,2 is adjacent in Hk to uk,5 as well. Furthermore, since uk, v ∈ NHk−1

[ui,2], it follows that
ui,2 /∈ {uk, v}. Thus uk, v ∈ NHk

[ui,1] \ {ui,2} ⊆ NHk
[ui], and thus, ui ∈ NHk−1

(uk) \N0(uk) =
N1(uk) ∪N12(uk) in Hk−1. Hence ui is adjacent in Hk to uk,5 as well.

Now suppose that ui,1 is adjacent in Hk to uk,6, i.e. that ui,1 ∈ N12(uk) ⊆ NHk−1
(uk)\N0(uk)

in Hk−1. Similarly to the previous paragraph, ui,2, ui ∈ NHk−1
(uk)\N0(uk) = N1(uk)∪N12(uk)

in Hk−1 as well. Furthermore it follows by Definition 2 that N0(uk) ⊆ NHk−1
(ui,1). By the

induction hypothesis, and since ui,2, ui /∈ N0(uk), we see that N0(uk) ⊆ NHk−1
[ui,1] \ {ui} =

NHk−1
[ui,2] and N0(uk) ⊆ NHk−1

[ui,1] \ {ui,2} ⊆ NHk−1
[ui]. That is, N0(uk) ⊆ NHk−1

(ui,2) and
N0(uk) ⊆ NHk−1

(ui), since ui,2, ui /∈ N0(uk). Therefore ui,2, ui ∈ N12(uk) in Hk−1, i.e. ui,2
and ui are adjacent in Hk to uk,6 as well. Summarizing, NHk

[ui,2] = NHk
[ui,1] \{ui} and

NHk
[ui,1] \ {ui,2} ⊆ NHk

[ui]. This proves the induction step in the case where D∗uk
(Vj) = ∅.

The following lemma is symmetric to Lemma 13.

Lemma 14 Let ui be a vertex of a graph G, and let Hk be the graph constructed at the kth step
of Algorithm Split-All, where 0 ≤ k ≤ i− 1, i.e. before the splitting of vertex ui. Then

• NHk
[ui,4] = NHk

[ui,3] \{ui}

• NHk
[ui,3] \ {ui,4} ⊆ NHk

[ui].

Recall by Definition 5 that the notion of splitting a vertex ui is well defined if there exists
a master component {ui,2} of ui (with one vertex), such that D∗ui

({ui,2}) 6= ∅ (cf. Definition 1).
In the next lemma (which extends Lemma 11) we prove that the notion of vertex splitting is
well defined at every step of Algorithm Split-All, i.e. that Algorithm Split-All is well defined.

Lemma 15 Let ui be a vertex of a graph G, and let Hk be the graph constructed at the kth step
of Algorithm Split-All, where 0 ≤ k ≤ i−1, i.e. before the splitting of vertex ui. Then {ui,2} and
{ui,4} are master components of ui in Hk. Furthermore D∗ui

({ui,2}) 6= ∅ and D∗ui
({ui,4}) 6= ∅

in Hk.

Proof. For k = 0 the lemma holds clearly due to Lemma 11, and since H0 = G∗. Now
consider the graph Hk constructed at the kth step of Algorithm Split-All, where 1 ≤ k ≤ i− 1,
i.e. before the splitting of vertex ui. For simplicity reasons, in the proof we will denote the
neighborhood NHk

(U) of a vertex set U in Hk by N(U). First suppose that {ui,2} (resp. {ui,4})
is not a connected component of Hk \ N [ui]. Then, since ui,2 (resp. ui,4) is not adjacent to
ui in Hk, there must be at least one vertex v of Hk, which is adjacent to ui,2 (resp. ui,4) and
not to ui in Hk. However, since v /∈ {ui, ui,2, ui,4}, and since v ∈ N [ui,2] (resp. v ∈ N [ui,4]), it
follows by Lemma 13 (resp. Lemma 14) that v ∈ N [ui,1] \{ui, ui,2} ⊆ N [ui] (resp. v ∈ N [ui,3]
\{ui, ui,4} ⊆ N [ui]), i.e. that v is adjacent to ui in Hk, which is a contradiction. Thus {ui,2}
(resp. {ui,4}) is a connected component of Hk \N [ui].

15

Now suppose that {ui,2} (resp. {ui,4}) is not a master component of ui in Hk. Then
there exists a connected component V0 6= {ui,2} (resp. V0 6= {ui,4}) of Hk \N [ui], such that
N({ui,2}) ⊂ N(V0) (resp. N({ui,4}) ⊂ N(V0)). Therefore ui,1 ∈ N(V0) (resp. ui,3 ∈ N(V0)),
i.e. there exists a vertex v ∈ V0, such that v ∈ N [ui,1] (resp. v ∈ N [ui,3]). Thus, since
v 6= ui,2 (resp. v 6= ui,4), Lemma 13 (resp. Lemma 14) implies that v ∈ N [ui], i.e. V0 is not a
connected component of Hk \N [ui], which is a contradiction. Thus {ui,2} (resp. {ui,4})
is a master component of ui in Hk. Furthermore, since ui,1 ∈ N({ui,2}) \N({ui,4})
and ui,3 ∈ N({ui,4}) \N({ui,2}), it follows that {ui,4} ∈ D∗ui

({ui,2}) 6= ∅ and that
{ui,2} ∈ D∗ui

({ui,4}) 6= ∅ in Hk. This completes the lemma.

Since we split every vertex of G exactly once in G∗, and since G∗ has 5n vertices,
where |V (G)| = n, the graph G# computed by Algorithm Split-All has 6n vertices. Fur-
thermore, if the input graph G is trapezoid, then G# is a permutation graph, cf. Theorem 1.
Indeed, in this case G∗ is also a trapezoid graph, where the trapezoids corresponding to the
augmenting vertices, i.e. the vertices of V (G∗) \ V (G), are trivial (lines), and at every iteration
a trapezoid Tui is replaced by the two trivial trapezoids (lines) l(Tui) and r(Tui). Denote by R#

the resulting permutation representation of G#. In the following, we will specify which of the 6n
lines in R# lie between the lines corresponding to the vertex derivatives ui,5, ui,6 of a vertex ui
of G.

4.2 The computation of the intermediate lines

In this section, we present Algorithm Intermediate-Lines that updates the sets {N̂i} initialized
in Algorithm Split-All (Algorithm 2). If G is a trapezoid graph (and thus G# is a permutation
graph), then as shown in Lemma 17, for each i = 1, . . . , n, N̂i contains the vertices of G# whose
corresponding lines lie between ui,5 and ui,6 in R#. For simplicity reasons, we may identify in
the sequel the vertices of G# with the corresponding lines in R#.

Algorithm 3 Intermediate-Lines

Input: The splitted graph G#, and for each i = 1, . . . , n the set N̂i computed in Algorithm
Split-All.

Output: The updated set N̂i, for each i = 1, . . . , n. If G is trapezoid, then {N̂i} satisfies
Lemma 17.

1: for i = 1 to n− 1 do
2: for j = i + 1 to n do
3: if uj,2 ∈ N̂i then

4: N̂i ← (N̂i \ {uj}) ∪ {uj,5}
5: if uj,4 ∈ N̂i then

6: N̂i ← (N̂i \ {uj}) ∪ {uj,6}

7: return N̂i, for every i = 1, 2, . . . n

Since Algorithm Intermediate-Lines iterates for every pair (i, j), 1 ≤ i < j ≤ n, and since
(by using the 0-1 membership vectors used in the proof of Lemma 4) every iteration can be
computed in constant time, the next lemma follows easily.

Lemma 16 Algorithm Intermediate-Lines runs in O(n2) time.

Lemma 17 Let G be a trapezoid graph on n vertices, let G# be the graph computed by Algorithm
Split-All, and let R# be a representation of G#. For every i = 1, 2, . . . , n, the lines that lie

16

between the derivatives ui,5 and ui,6 in R# correspond to the vertices of the set N̂i computed by
Algorithm Intermediate-Lines.

Proof. Let G be a trapezoid graph and let G∗ be the trapezoid graph constructed by Algorithm
Augment-All (Algorithm 1). Let Hi, i = 1, 2, . . . , n be the trapezoid graph constructed at the
ith iteration of Algorithm Split-All (Algorithm 2), (i.e. vertex ui has just been split) where
H0 = G∗. For the purposes of the proof, denote by Ri−1, i = 1, 2, . . . , n, a standard trapezoid
representation of Hi−1 with respect to ui (before the splitting of vertex ui). Furthermore, denote
by Ri, i = 1, 2, . . . , n, the trapezoid representation of Hi, which is obtained from Ri−1, when we
replace the trapezoid Tui by the lines l(Tui) and r(Tui) (during the splitting of vertex ui). Recall
that these lines correspond to the derivatives ui,5 and ui,6 of ui of Hi. Algorithm Intermediate-

Lines iterates for every i = 1, 2, . . . , n−1 and for every j = i+1, i+2, . . . , n. We let N̂i,j denote

the value of N̂i at the end of the jth iteration. We will prove by induction on j that, after
the iteration that corresponds to a pair (i, j), N̂i,j is exactly the set of vertices of Hj , whose
trapezoids lie between ui,5 and ui,6 in Rj . Due to Lemma 5, it is easy to see that initially, i.e. for

j = i, N̂i,i = N0(ui) is the set of vertices of Hi, whose trapezoids lie between the derivatives

ui,5 and ui,6 of ui in Ri (in particular, N̂n−1,n is the set of lines that lie between un,5 and un,6
in Rn = R#). This proves the induction basis.

Now suppose that N̂i,j−1 is exactly the set of vertices of Hj−1, whose trapezoids lie between
the derivatives ui,5 and ui,6 in Rj−1, for some index j, where i + 1 ≤ j ≤ n. Consider the
standard trapezoid representation Rj−1 of Hj−1 with respect to uj , which is constructed by the
proof of Lemma 5 from Rj−1. By Definition 5, let N1(uj), N2(uj), and N12(uj) be the sets
defined by Definition 1 with respect to the master component {uj,2} of uj in Hj−1. Namely
N1(uj) ∪ N12(uj) are those neighbors of uj in Hj−1 which are also adjacent to uj,2, while
N2(uj) ∪ N12(uj) are those neighbors of uj in Hj−1, which are also adjacent to D∗uj

({uj,2}).
Due to Lemma 15, {uj,4} is also a master component of uj in Hj−1, while {uj,4} ∈ D∗ui

({uj,2}).
Thus, Lemma 3 implies that N2(uj)∪N12(uj) includes those neighbors of uj in Hj−1 which are
also adjacent to uj,4.

Since Rj−1 is a standard trapezoid representation of Hj−1 with respect to uj , it follows by
Definition 3 that the line l(Tuj), which corresponds to the vertex uj,5 (resp. the line r(Tuj),
which corresponds to the vertex uj,6) intersects exactly with the trapezoids of N1(uj)∪N12(uj)
(resp. N2(uj) ∪ N12(uj)) in Rj−1. Thus, after replacing in Rj−1 the trapezoid Tuj by its lines
l(Tuj) and r(Tuj), the lines uj,5 and uj,2 (resp. uj,6 and uj,4) of Hj intersect with the same
trapezoids in Rj , namely with the trapezoids of N1(uj) ∪ N12(uj) (resp. N2(uj) ∪ N12(uj)).
Furthermore, since uj,5 intersects uj,1 (resp. uj,6 intersects uj,3), and since uj,1 intersects uj,2
(resp. uj,3 intersects uj,4) in Hj , it is easy to see that uj,5 (resp. uj,6) lies between ui,5 and
ui,6 in Rj if and only if uj,2 (resp. uj,4) lies between ui,5 and ui,6 in Rj as well. Thus, after

the iteration that corresponds to a pair (i, j), N̂i,j is exactly the set of vertices of Hj , whose
trapezoids lie between ui,5 and ui,6 in Rj . This completes the induction step, and thus, the
lemma follows.

Theorem 1 A graph G on n vertices is a trapezoid graph if and only if the graph G# with 6n
vertices constructed by Algorithm Split-All is a permutation graph, with a permutation represen-
tation R#, such that N̂i is exactly the set of vertices of G#, whose lines lie between the vertex
derivatives ui,5 and ui,6 in R#, for every i = 1, 2, . . . , n.

Proof. The necessity part of the proof follows by Lemma 17. For the sufficiency part, consider
a permutation representation R# of G#, such that N̂i is exactly the set of vertices of G#,
whose lines lie between the vertex derivatives ui,5 and ui,6 in R#, for every i = 1, 2, . . . , n. Let

17

Rn = R#. We construct a trapezoid representation R0 as follows. For every i = n, n− 1, . . . , 1,
we replace in Ri the lines of the vertices ui,5 and ui,6 by a trapezoid Tui defined by these lines,
obtaining the trapezoid representation Ri−1. We will prove by induction on i that Ri is a
trapezoid representation of Hi (the graph constructed at the ith step of Algorithm Split-All),
for every i = n, n− 1, . . . , 1, 0, from which it then follows that R0 is a trapezoid representation
of H0. For i = n, Rn = R# is clearly a trapezoid representation of G# = Hn, since R# is by
assumption a permutation representation of G#. This proves the induction basis.

For the induction step, suppose that Ri is a trapezoid representation of Hi, for some i, where
1 ≤ i ≤ n. All vertices of Hi other than ui,5 and ui,6 are either uj,k for some j ∈ {1, 2, . . . , n}
and k ∈ {1, 2, 3, 4} (i.e. augmenting vertices), or uj,k for some j ∈ {1, 2, . . . , i−1} and k ∈ {5, 6}
(i.e. other vertex derivatives), or uj for some j ∈ {i + 1, . . . , n} (i.e. vertices of G, which are
unsplitted in Hi, and thus are represented by trapezoids in Ri). Consider now an arbitrary
vertex v /∈ {ui,5, ui,6} of Hi. We will distinguish in the following three cases regarding the
vertex v.

Case 1. Suppose that v ∈ N1(ui) ∪N2(ui) ∪N12(ui) in Hi−1, i.e. Tv intersects by Defini-
tion 5 at least one of the derivatives ui,5 and ui,6 in Ri. Then, in particular v ∈ NHi−1(ui), and
thus Tv correctly intersects the new trapezoid Tui of the trapezoid representation Ri−1.

Case 2. Suppose that v /∈ N1(ui) ∪N2(ui) ∪N12(ui) in Hi−1, where v is either an augment-
ing vertex or a derivative of a vertex uj for some j ≤ i− 1. Then, by the initialization of the

set N̂i in line 4 of Algorithm Split-All, v ∈ N̂i if and only if v ∈ N0(ui) in Hi−1, since v is
neither added to nor removed from N̂i by Algorithm Intermediate-Lines. Thus, by our assump-
tion on the initial permutation representation R#, the line Tv lies between the derivatives ui,5
and ui,6 in Ri if and only if v ∈ N0(ui) in Hi−1, or equivalently, if and only if v ∈ NHi−1(ui)
(since by assumption v /∈ N1(ui) ∪N2(ui) ∪N12(ui) in Hi−1). Thus, for every such vertex v
of Hi−1, Tv intersects the new trapezoid Tui of the trapezoid representation Ri−1 if and only
if v ∈ NHi−1(ui).

Case 3. Suppose that v /∈ N1(ui) ∪N2(ui) ∪N12(ui) in Hi−1, where v = uj for some j ≥ i+1,
i.e. v is an unsplitted vertex of Hi. In this case, Tuj does not intersect the derivatives ui,5
and ui,6 in Ri, and thus Tuj either lies to the right or to the left of both ui,5 and ui,6 in Ri, or
lies between ui,5 and ui,6 in Ri.

Case 3a. First suppose that Tuj lies to the right or to the left of both ui,5 and ui,6 in Ri.
Then, in particular, it is easy to see that at least one of the lines of the augmenting vertices
uj,1 and uj,3 lies to the right or to the left of both ui,5 and ui,6 in Ri. We will prove that in
this case uj /∈ NHi−1(ui). Suppose otherwise that uj ∈ NHi−1(ui). Then, since by assumption
uj /∈ N1(ui) ∪N2(ui) ∪N12(ui) in Hi−1, it follows that uj ∈ N0(ui) in Hi−1, i.e. every neighbor
of uj in Hi−1 is also a neighbor of ui in Hi−1. Therefore, in particular, both uj,1 and uj,3 are
neighbors of ui in Hi−1. Thus, each w ∈ {uj,1, uj,3} either lies between the derivatives ui,5 and

ui,6 in Ri (in the case where w ∈ N0(ui) in Hi−1, or equivalently w ∈ N̂i), or intersects at
least one of the derivatives ui,5 and ui,6 in Ri (in the case where w ∈ N1(ui)∪N2(ui)∪N12(ui)
in Hi−1). This is a contradiction, since at least one of the lines of the augmenting vertices uj,1
and uj,3 lies to the right or to the left of both ui,5 and ui,6 in Ri, as we proved above. Therefore,
uj /∈ NHi−1(ui) in the case where Tuj lies to the right or to the left of both ui,5 and ui,6 in Ri, and
thus Tuj correctly does not intersect the new trapezoid Tui of the trapezoid representation Ri−1.

Case 3b. Now suppose that Tuj lies between ui,5 and ui,6 in Ri. Then, both uj,5 and uj,6 lie

between ui,5 and ui,6 in the initial permutation representation R#, and thus uj,5, uj,6 ∈ N̂i by

our assumption on R#. Therefore, in particular, uj,2 ∈ N̂i by Algorithm Intermediate-Lines, and

thus also uj,2 ∈ N0(ui) in Hi−1 by the initialization of the set N̂i in line 4 of Algorithm Split-All.
That is, uj,2 ∈ NHi−1(ui), or equivalently ui ∈ NHi−1(uj,2). Therefore, since 0 ≤ i−1 < j−1, it

18

follows by Lemma 13 that ui ∈ NHi−1(uj,1) and ui ∈ NHi−1(uj). Thus Tuj correctly intersects
the new trapezoid Tui of the trapezoid representation Ri−1.

Summarizing, in the trapezoid representation Ri−1, the new trapezoid Tui intersects exactly
with the trapezoids Tv, such that v ∈ NHi−1(ui), and thus Ri−1 is a trapezoid representa-
tion of Hi−1. This completes the induction step. Therefore R0 is a trapezoid representation
of H0 = G∗, i.e. G∗ is a trapezoid graph, and thus G is a trapezoid graph as well by Corollary 1.
Then a trapezoid representation R of G can be obtained by removing from R0 the lines of the
vertices ui,1, ui,2, ui,3, ui,4 for every i = 1, 2, . . . , n. This completes the lemma.

5 T -orientations of graphs

Our trapezoid recognition algorithm interprets the property of permutation graphs stated in
Theorem 1 in terms of transitive orientations. In this section we extend the notion of a transitive
orientation of a graph to the notion of a T -orientation, and in Section 6, we provide an algorithm
for computing a T -orientation, if one exists. Recall that a graph is transitively orientable if and
only if it is a comparability graph [6]. For simplicity of the presentation, in this section G
denotes an arbitrary graph, and not the input graph discussed in Sections 2, 3, and 4. We first
give some definitions on arbitrary graphs that will be used in the sequel.

Definition 6 Given an edge e = xy of a graph G = (V,E), Ñ(xy) = {v ∈ V : vx, vy ∈ E}
is the set of vertices adjacent to both x and y in E, and Ẽ(xy) = {uv ∈ E : u ∈ Ñ(xy), v ∈
{x, y}} ∪ {xy} is the set of edges with one endpoint in Ñ(xy) and the other in {x, y}, as well
as the edge xy.

Definition 7 Let G = (V,E) be a graph. An edge neighborhood set N = {e,N ′} consists of
an edge e = xy ∈ E of G, together with a vertex subset N ′ ⊆ Ñ(xy).

Definition 8 Let F be a transitive orientation of G = (V,E), and let e = xy ∈ E be an edge
of G. The T -interval IF (e) of e is the vertex set defined as follows:

1. if 〈xy〉 ∈ F , then IF (e) = {z ∈ V : 〈xz〉 , 〈zy〉 ∈ F},

2. if 〈yx〉 ∈ F , then IF (e) = {z ∈ V : 〈yz〉 , 〈zx〉 ∈ F}.

The T -interval IF (e) of an edge e = xy includes exactly the vertices z of G, whose incident
arcs to x and y in F imply the arc 〈xy〉 (or 〈yx〉) in F by direct transitivity. Note that, by
Definition 6, for the T -interval IF (e) of an edge e = xy, IF (e) ⊆ Ñ(xy).

Definition 9 Let Ni = {ei, N ′i}, i = 1, 2, . . . , k, be a set of edge neighborhood sets in G.
If there exists a transitive orientation F of G such that IF (e) = N ′i for every i = 1, 2, . . . , k,
then F is called a T -orientation on N1, N2, . . . , Nk, and G is called T -orientable on these edge
neighborhood sets.

In the following we define the notion of deactivating an edge ek of G, where Nk = {ek, N ′k}
is an edge neighborhood set in G. The constructed graph G̃(ek) has four new vertices and will
be used for our trapezoid recognition algorithm.

Definition 10 Let G be a graph and let Ni = {ei, N ′i} be an edge neighborhood set in G, where

ei = xiyi. The graph G̃(ei) obtained by deactivating the edge ei is defined as follows:

1. V (G̃(ei)) = V (G) ∪ {ai, bi, ci, di},

19

2. E(G̃(ei)) = E(G) ∪ {xiai, aibi, bici, cidi, diyi} ∪ {aiz, biz, ciz, diz : z ∈ Ñ(xiyi) \N ′i}.

An example of the deactivation operation can be seen in Figure 5. In this example, z1 ∈ N ′i ,

z2 ∈ Ñ(xiyi) \N ′i , w1 ∈ N(xi) \N(yi), and w2 ∈ N(yi) \N(xi). For better visibility, the edges

of G̃(ei) \ E(G) are drawn with dashed lines.

z1 z2w1 w2

xi

ai bi ci di

yi

(a)

z1 z2w1 w2

xi

ai bi ci di

yi

(b)

Figure 5: (a) A graph G and (b) the graph G̃(ei) obtained after the deactivation of ei = xiyi
with respect to Ni = {ei, {z1}}.

Lemma 18 Let G be a graph and let Ni = {ei, N ′i}, i = 1, 2, . . . , k, be a set of edge neighborhood

sets in G. Then, G is T -orientable on N1, N2, . . . , Nk if and only if G̃(ek) is T -orientable on
N1, N2, . . . , Nk−1.

Proof. Let ek = xkyk. Suppose first that the graph G = (V,E) is T -orientable on
N1, N2, . . . , Nk, and let F be a T -orientation of G on these neighborhood sets. Without loss of
generality we may assume that 〈xkyk〉 ∈ F . We will extend F to an orientation F ′ of G̃(ek),
as follows. First, orient the arcs 〈xkak〉, 〈bkak〉, 〈bkck〉, 〈dkck〉 and 〈dkyk〉 in F ′. For every
z ∈ Ñ(xkyk) \N ′k, either 〈zxk〉 , 〈zyk〉 ∈ F or 〈xkz〉 , 〈ykz〉 ∈ F . If 〈zxk〉 , 〈zyk〉 ∈ F , then orient
the arcs 〈zak〉, 〈zbk〉, 〈zck〉, and 〈zdk〉 in F ′; otherwise, orient the arcs 〈akz〉, 〈bkz〉, 〈ckz〉, and
〈dkz〉 in F ′. Note that, for every z ∈ Ñ(xkyk) \N ′k, the incident arcs of z in F ′ \F are either all
incoming or all outgoing arcs in F ′. In Figure 6 the orientation F ′ is illustrated on two small
examples.

z1 z2w1 w2

xk yk

ak bk ck dk

(a)

z1 z2w1 w2

xk yk

ak bk ck dk

(b)

Figure 6: Two examples for the orientation F ′ of the graph G̃(ei), i = k, of Figure 5, where
ek = xkyk.

We will prove that the resulting orientation F ′ of G̃(ek) is transitive. To this end, consider
two arbitrary arcs 〈uv〉 , 〈vw〉 ∈ F ′. We will also prove that 〈uw〉 ∈ F ′. We distinguish in the
following four cases about the arcs 〈uv〉 and 〈vw〉.

Case 1. Let 〈uv〉 , 〈vw〉 ∈ F . Then clearly 〈uw〉 ∈ F ⊆ F ′, since F is transitive.
Case 2. Let 〈uv〉 , 〈vw〉 ∈ F ′ \ F . Then, v 6= xk (resp. v 6= yk), since xk (resp. yk) has only

one incident arc in F ′ \F . Furthermore, v /∈ Ñ(xkyk) \N ′k, since by the construction of F ′, the

20

incident arcs to every vertex of Ñ(xkyk) \N ′k in F ′ \ F are either all incoming or all outgoing.

Thus, v ∈ {ak, bk, ck, dk}. Now, if u ∈ {xk, bk, dk}, then w must belong to Ñ(xkyk) \N ′k. How-
ever, by the construction of F ′, and since 〈vw〉 ∈ F ′, it follows that 〈xkw〉 , 〈bkw〉 , 〈dkw〉 ∈ F ′,
i.e. 〈uw〉 ∈ F ′. Similarly, if w ∈ {ak, ck, yk}, then u must belong to Ñ(xkyk) \ N ′k. By the
construction of F ′, and since 〈uv〉 ∈ F ′, it follows that 〈uak〉 , 〈uck〉 , 〈uyk〉 ∈ F ′, i.e. 〈uw〉 ∈ F ′.
Finally, if both u,w ∈ Ñ(xkyk)\N ′k, then by the construction of F ′ we see that 〈uxk〉 , 〈xkw〉 ∈ F ,
and thus, 〈uw〉 ∈ F ⊆ F ′, since F is transitive.

Case 3. Let 〈uv〉 ∈ F and 〈vw〉 ∈ F ′ \ F . Then, v /∈ {ak, bk, ck, dk}, since ak, bk, ck, dk ∈
V (G̃) \ V (G), and thus, they have no incident arcs in F . Furthermore v 6= yk, since yk has no
outgoing arcs in F ′ \ F . Thus, v ∈ {xk} ∪ Ñ(xkyk) \ N ′k. In the case where v = xk, we see
that w = ak, since 〈xkak〉 is the only outgoing arc from xk in F ′ \ F . Since 〈uv〉 = 〈uxk〉 ∈ F ,
it follows that u /∈ N ′k. Furthermore, since 〈uxk〉 , 〈xkyk〉 ∈ F , it follows that 〈uyk〉 ∈ F ,

since F is transitive, and thus, in particular, uyk ∈ E(G̃(ek)), i.e. u ∈ Ñ(xkyk). Therefore,
u ∈ Ñ(xkyk) \ N ′k. Thus, it follows by the construction of F ′ that 〈uw〉 = 〈uak〉 ∈ F ′. In the

case where v ∈ Ñ(xkyk) \N ′k, it follows that w ∈ {ak, bk, ck, dk}, since 〈vak〉 , 〈vbk〉 , 〈vck〉 , 〈vdk〉
are the only possible outgoing arcs from w in F ′\F . Then, 〈vxk〉 , 〈vyk〉 ∈ F by the construction
of F ′, and thus, 〈uxk〉 , 〈uyk〉 ∈ F as well, since F is transitive. It follows that u ∈ Ñ(xkyk)\N ′k,
and thus, 〈uw〉 ∈ F ′.

Case 4. Let 〈uv〉 ∈ F ′\F and 〈vw〉 ∈ F . Then, similarly to Case 3, v /∈ {ak, bk, ck, dk}, since
ak, bk, ck, dk ∈ V (G̃)\V (G), and thus, they have no incident arcs in F . Furthermore v 6= xk, since
xk has no incoming arcs in F ′ \F . Thus, v ∈ {yk}∪ Ñ(xkyk)\N ′k. In the case where v = yk, we
see that u = dk, since 〈dkyk〉 is the only incoming arc to yk in F ′ \ F . Since 〈vw〉 = 〈ykw〉 ∈ F ,
it follows that w /∈ N ′k. Furthermore, since 〈xkyk〉 , 〈ykw〉 ∈ F , it follows that 〈xkw〉 ∈ F ,

since F is transitive, and thus, in particular, xkw ∈ E(G̃(ek)), i.e. w ∈ Ñ(xkyk). Therefore,
w ∈ Ñ(xkyk) \N ′k. Thus, it follows by the construction of F ′ that 〈uw〉 = 〈dkw〉 ∈ F ′. In the

case where v ∈ Ñ(xkyk) \N ′k, it follows that u ∈ {ak, bk, ck, dk}, since 〈akv〉 , 〈bkv〉 , 〈ckv〉 , 〈dkv〉
are the only possible incoming arcs to v in F ′ \ F . Then 〈xkv〉 , 〈ykv〉 ∈ F by the construction
of F ′, and thus 〈xkw〉 , 〈ykw〉 ∈ F as well, since F is transitive. It follows that w ∈ Ñ(xkyk)\N ′k,
and thus, 〈uw〉 ∈ F ′.

Thus the constructed orientation F ′ of G̃(ek) is transitive. Since F ⊆ F ′ is a T -orientation
of G on N1, N2, . . . , Nk, it follows that F ′ is a T -orientation of G̃(ek) on N1, N2, . . . , Nk, and
thus also a T -orientation of G̃(ek) on N1, N2, . . . , Nk−1.

Conversely, let ek = xkyk and suppose that F ′ is a T -orientation of G̃(ek) on
N1, N2, . . . , Nk−1. We will show that F ′ is also a T -orientation of G̃(ek) on Nk. Without
loss of generality we may assume that 〈xkyk〉 ∈ F ′. Then, since F ′ is transitive, and since
ykak, xkbk, akck, bkdk, ckyk /∈ E(G̃(ek)), it follows that 〈xkak〉 , 〈bkak〉 , 〈bkck〉 , 〈dkck〉 , 〈dkyk〉 ∈
F ′. First consider a vertex z ∈ N ′k. Then, since akz /∈ E(G̃(ek)), since 〈xkak〉 ∈ F ′, and since

F ′ is transitive, it follows that 〈xkz〉 ∈ F ′. Similarly 〈zyk〉 ∈ F ′, since dkz /∈ E(G̃(ek)), and since
〈dkyk〉 ∈ F ′. Thus 〈xkz〉 , 〈zyk〉 ∈ F ′ for every z ∈ N ′k. Now consider a vertex z ∈ Ñ(xkyk)\N ′k,

and suppose that 〈xkz〉 ∈ F ′ (resp. 〈zxk〉 ∈ F ′). Then, since xkck, ckyk /∈ E(G̃(ek)), and
since F ′ is transitive, it follows that 〈ckz〉 , 〈ykz〉 ∈ F ′ (resp. 〈zck〉 , 〈zyk〉 ∈ F ′). Thus for ev-
ery z ∈ Ñ(xkyk) \ N ′k, either 〈xkz〉 , 〈ykz〉 ∈ F ′, or 〈zxk〉 , 〈zyk〉 ∈ F ′. Therefore F ′ is also

a T -orientation of G̃(ek) on Nk. Thus the restriction of F ′ on G is a T -orientation of G on
N1, N2, . . . , Nk. This completes the lemma.

After deactivating the edge ek of G, obtaining the graph G̃(ek), we can continue by deac-
tivating sequentially all edges ek−1, ek−2, . . . , e1 that correspond to the edge neighborhood sets
Nk−1, Nk−2, . . . , N1, as presented in Algorithm Deactivate-All. Now the next theorem easily
follows by repeatedly applying Lemma 18.

21

Algorithm 4 Deactivate-All

Input: An undirected graph G with edge neighborhood sets Ni = {ei, N ′i}, i = 1, 2, . . . , k

Output: Deactivate all edges ei, i = 1, 2, . . . , k to produce G̃

1: Pk+1 ← G
2: for i = k downto 1 do
3: Pi ← P̃i+1(ei) {Pi is obtained by deactivating the edge ei in Pi+1}
4: G̃← P1

5: return G̃

Theorem 2 Let G be a graph, let Ni = {ei, N ′i}, i = 1, 2, . . . , k, be a set of edge neighborhood

sets in G, and let G̃ be the graph computed from G by Algorithm Deactivate-All. Then, G is
T -orientable on N1, N2, . . . , Nk if and only if G̃ is transitively orientable.

Since at every step of Algorithm 4, the graph Pi has, by Definition 10, four more vertices
than the previous graph Pi−1, and since each of them can have at most n neighbors in Pi,
the computation of Pi can be computed in O(n) time. Thus, since we iterate for every edge
neighborhood set Ni, i = 1, 2, . . . , k, the next lemma follows.

Lemma 19 Algorithm 4 runs in O(nk) time, where n is the number of vertices in G.

6 A trapezoid graph recognition algorithm

In this section we complete the interpretation of the property of permutation graphs stated
in Theorem 1 in terms of transitive orientations. This will enable us to recognize efficiently
whether the splitted graph constructed by Algorithm Split-All (Algorithm 2) is a permutation
graph with this specific property, or equivalently, due to Theorem 1, whether the original graph
is trapezoid. Recall that the class of permutation graphs is the intersection of the classes of
comparability and cocomparability graphs, and thus, a graph is permutation if and only if its
complement is a permutation graph as well. Furthermore, for every transitive orientation F
of the complement G of a permutation graph G, we can construct (in O(n3) time, see [6])
a permutation representation R of G, such that the line of x lies to the left of the line of y in R
if and only if 〈xy〉 ∈ F .

Before presenting the trapezoid recognition algorithm, we establish the relationship between
T -orientations and permutation graph representations.

Theorem 3 Let G be a permutation graph, let ei = xiyi, i = 1, 2, . . . , k, be a set of edges
of the complement graph G of G, and let Ni = {ei, N ′i}, i = 1, 2, . . . , k, be a set of edge
neighborhood sets in G. Then there exists a permutation representation R of G, such that for
every i = 1, 2, . . . , k, exactly the lines that correspond to vertices of N ′i lie between the lines of xi
and yi in R, if and only if the complement G is T -orientable on Ni = {ei, N ′i}, i = 1, 2, . . . , k.

Proof. Since ei = xiyi is an edge of G for every i = 1, 2, . . . , k, xi is not adjacent to yi in the
complement G of G. Furthermore, since G is a cocomparability graph (as a permutation graph),
we can define for every permutation representation R of G a transitive orientation FR of the
complement G of G, such that 〈xy〉 ∈ FR if and only if the line of x lies to the left of the line of y
in R. Then, clearly, the line of a vertex z of G lies in R between the lines of two non-adjacent
vertices x and y in G if and only if either 〈xy〉 , 〈xz〉 , 〈zy〉 ∈ FR, or 〈yx〉 , 〈yz〉 , 〈zx〉 ∈ FR. This
is equivalent to the fact that z ∈ IFR

(xy). Therefore IFR
(xiyi) = N ′i for every i = 1, 2, . . . , k

22

if and only if for every i = 1, 2, . . . , k, exactly the lines that correspond to vertices of N ′i lie
between the lines of xi and yi in R. Thus, if there exists such a permutation representation R
of G, then FR is a T -orientation of G on N1, N2, . . . , Nk, i.e. G is T -orientable on N1, N2, . . . , Nk.

Conversely, suppose that G is T -orientable on N1, N2, . . . , Nk, and let F be a T -orientation
of G on these neighborhood sets. By the definition of a T -orientation, F is in particular a
transitive orientation of G. Thus, we can construct a permutation representation R of the
complement graph G of G, such that for any two non-adjacent vertices x and y in G, the line
of x lies to the left of the line of y in R if and only if 〈xy〉 ∈ F [6]. Then, clearly, the line of
a vertex z lies between the lines of x and y in R if and only if z ∈ IF (xy). Therefore, since G
is T -orientable on N1, N2, . . . , Nk (i.e. IF (xiyi) = N ′i for every i = 1, 2, . . . , k), it follows that
exactly the lines that correspond to vertices of N ′i lie between the lines of xi and yi in R, for
every i = 1, 2, . . . , k.

Now, we are ready to present our recognition algorithm of trapezoid graphs. Our algorithm
uses an existing algorithm that we now review. McConnell and Spinrad [9] (see also [12])
developed a linear time algorithm for finding an ordering of the vertices of a given graph G
with the property that this ordering is a transitive orientation, if G is a comparability graph. If
the given graph G is not a comparability graph, then the ordering produced by their algorithm
is an orientation, but it is not transitive. The fastest known algorithm to determine whether
a given ordering is a transitive orientation requires matrix multiplication, currently achieved
in O(n2.376) [4]. However, similarly to [9], we do not need to confirm that our orderings are
transitive orientations. In particular, as pointed out in [12], given an orientation of a graph G
and an orientation of its complement G, we can check in linear O(n+m) time whether these two
orientations produce a permutation representation of G, where n and m denote the number of
vertices and edges of G, respectively. We now present our trapezoid graph recognition algorithm
(Algorithm 5). The correctness of this algorithm is presented in Theorem 4; the timing analysis
is established in Theorem 5.

Theorem 4 If G is a trapezoid graph, then the Recognition of Trapezoid Graphs Algorithm
(Algorithm 5) returns a trapezoid representation of G. Otherwise, it announces that G is not a
trapezoid graph.

Proof. Let G = (V,E) be an undirected graph with vertex set V = {u1, u2, . . . , un}, let G∗ be
the graph constructed by Algorithm Augment-All (Algorithm 1) from G, and G# be the graph
constructed by Algorithm Split-All (Algorithm 2). Let ui,5, ui,6 be the vertex derivatives in G#

that correspond to vertex ui, i = 1, 2, . . . , n, in G. Furthermore, let N̂i, i = 1, 2, . . . , n, be the set
of intermediate vertices of ui,5, ui,6 computed by Algorithm Intermediate-Lines (Algorithm 3).

First suppose that G is a trapezoid graph. Then, due to Theorem 1, G# is a permutation
graph with a permutation representation R#, such that N̂i is exactly the set of vertices of G#,
whose lines lie between the vertex derivatives ui,5 and ui,6 in R#, for every i = 1, 2, . . . , n.
Since G# is a comparability graph (as a permutation graph), the orientation F1 of G# com-
puted in line 5 of the algorithm is a transitive orientation of G# [9]. Furthermore, in par-

ticular, the complement G# of G# is T -orientable on N1, N2, . . . , Nn by Theorem 3, where
Ni = {ui,5ui,6, N̂i}, i = 1, 2, . . . , n, are the edge neighborhood sets of G# computed in line 7.

Therefore, G̃ is transitively orientable by Theorem 2, and thus the orientation F2 of G̃ computed
in line 9 is transitive [9].

Moreover, due to the sufficiency part of the proof of Lemma 18, F2 is also a T -orientation of G̃
on N1, N2, . . . , Nn. Thus, since G# is an induced subgraph of G̃, the restriction F ′2 = F2|G#

of F2 to G# is also a T -orientation of G# on N1, N2, . . . , Nn, and in particular F ′2 is also a

transitive orientation of G#. Therefore, since both F1 and F ′2 are transitive orientations of G#

23

Algorithm 5 Recognition of Trapezoid Graphs

Input: An undirected graph G = (V,E) with vertex set V = {u1, u2, . . . , un}
Output: A trapezoid representation of G, or the announcement that G is not a trapezoid graph

1: Construct the augmented graph G∗ from G by Algorithm Augment-All (Alg. 1) {G∗ has 5n
vertices}

2: Construct the splitted graph G# from G∗ by Algorithm Split-All (Alg. 2) {G# has 6n
vertices}

3: Let ui,5, ui,6, i = 1, 2, . . . , n, be the vertex derivatives in G#

4: Compute the sets N̂i, i = 1, 2, . . . , n, by Algorithm Intermediate-Lines (Alg. 3)
5: Compute an ordering F1 of G# by [9]

6: Compute the complement G# of G#

7: Compute the edge neighborhood sets Ni = {ui,5ui,6, N̂i}, i = 1, 2, . . . , n, in G#

8: Compute the graph G̃ from G# and Ni, i = 1, 2, . . . , n, by Algorithm Deactivate-All (Alg. 4)
9: Compute an ordering F2 of G̃ by [9]

10: F ′2 ← F2|G# {Compute the restriction of F2 on G#}
11: if the orderings F1 and F ′2 do not represent G# as a permutation graph (see [12]) then
12: return “G is not a trapezoid graph”
13: else
14: Compute a permutation representation R# of G# from the orderings F1 and F ′2 by [6]
15: Replace in R# the lines of the derivatives ui,5, ui,6, i = 1, 2, . . . , n, by a trapezoid Tui

defined by these lines
16: Remove the lines of the vertices {ui,1, ui,2, ui,3, ui,4}, i = 1, 2, . . . , n
17: Let R be the resulting trapezoid representation
18: if R is a trapezoid representation of G then
19: return R
20: else
21: return “G is not a trapezoid graph”

and G#, respectively, they represent G# as a permutation graph (see [12]). Thus, we can
compute by [6] a permutation representation R# of G# from the orderings F1 and F ′2, such that

for every i = 1, 2, . . . , n, exactly the lines that correspond to vertices of N̂i lie between the lines
of ui,5 and ui,6 in R#. Then, similarly to the proof of Theorem 1, we can replace in R# the
lines of the derivatives ui,5 and ui,6, i = 1, 2, . . . , n, by a trapezoid Tui defined by these lines,
and remove the lines of the vertices ui,1, ui,2, ui,3, ui,4, obtaining a trapezoid representation R
of G, as returned in line 19.

Now suppose that G is not a trapezoid graph. If either or both of F1 and F ′2 are not

transitive orientations of G# and G#, respectively, then the algorithm correctly concludes in
line 12 that G is not a trapezoid graph. Suppose that F1 and F ′2 are both transitive orientations

of G# and G#, respectively (and thus G# is a permutation graph), but F2 is not a transitive
orientation of G̃. Then by Theorems 1, 2, and 3, G is not a trapezoid graph, as confirmed in
line 21 of the algorithm. This completes the proof of the theorem.

Theorem 5 Let G = (V,E) be an undirected graph, where |V | = n and |E| = m. Then the
Recognition of Trapezoid Graphs Algorithm (Algorithm 5) runs in O(n(n + m)) time.

Proof. The first two lines of the algorithm each require O(n(n + m)) time by Lemmas 8
and 12, respectively. Furthermore, the computation of all the sets N̂i, i = 1, 2, . . . , n, can
be done in O(n2) time by Lemma 16. The complement G# of G# in line 6 can clearly be

24

computed in O(n2) time. Then the graph G̃, which is a supergraph of G#, can be com-
puted in O(n2) time by Lemma 19, since there are in total k = n edge neighborhood sets
Ni = {ui,5ui,6, N̂i}, i = 1, 2, . . . , n. As pointed out in the preamble to the algorithm, we can

compute the ordering F1 of G# in line 5 (resp. the ordering F2 of G̃ in line 9) in linear time
in the size of G# (resp. of G̃) [9], i.e. in O(n + m) time (resp. in O(n2) time). Moreover, the

restriction F2|G# of F2 on G# can be clearly done in O(n) time, just by removing from F2 all

vertices of G̃ \ G#. Then the permutation representation R# can be computed in O(n2) time
by [6]. The replacement of the lines of the derivatives ui,5 and ui,6 by a trapezoid Tui in R#,
i = 1, 2, . . . , n, as well as the removal of all vertices {ui,1, ui,2, ui,3, ui,4}, i = 1, 2, . . . , n, can be
now performed in O(n) time. Finally, the determination of whether R is a trapezoid represen-
tation of the given graph G can be simply done in O(n2) time, thereby yielding an overall time
complexity of O(n(n + m)).

7 Concluding Remarks

In this paper we have shown that the concept of vertex splitting can be used to recognize
trapezoid graphs in O(n(n + m)) time. The algorithm transforms a given graph G into a
graph G# that is a permutation graph with a special property if and only if G is a trapezoid
graph. In [11] it was shown that vertex splitting can be used to show that the recognition
problems of tolerance and bounded tolerance graphs are NP-complete. It would be interesting
to see whether vertex splitting can be used to settle the longstanding questions of the recognition
status of both PI and PI∗ graphs. As mentioned in the introduction, both families lie strictly
between permutation and trapezoid graphs.

Acknowledgment: The authors thank Faithful Cheah for his helpful comments in the prepa-
ration of this paper.

References

[1] K. P. Bogart, P. C. Fishburn, G. Isaak, and L. Langley. Proper and unit tolerance graphs. Discrete
Applied Mathematics, 60(1-3):99–117, 1995.

[2] F. Cheah. A recognition algorithm for II-graphs. PhD thesis, Department of Computer Science,
University of Toronto, 1990.

[3] F. Cheah and D. G. Corneil. On the structure of trapezoid graphs. Discrete Applied Mathematics,
66(2):109–133, 1996.

[4] D. Coppersmith and S. Winograd. Matrix multiplication via arithmetic progressions. Journal of
Symbolic Computation, 9(3):251–280, 1990.

[5] D. G. Corneil and P. A. Kamula. Extensions of permutation and interval graphs. In Proceedings
of the 18th Southeastern Conference on Combinatorics, Graph Theory and Computing, Congressus
Numerantium 58, pages 267–275, 1987.

[6] M. C. Golumbic. Algorithmic graph theory and perfect graphs (Annals of Discrete Mathematics),
Vol. 57). North-Holland Publishing Co., 2nd edition, 2004.

[7] L. Langley. Interval tolerance orders and dimension. PhD thesis, Dartmouth College, 1993.

[8] T.-H. Ma and J. P. Spinrad. On the 2-chain subgraph cover and related problems. Journal of
Algorithms, 17(2):251–268, 1994.

[9] R. M. McConnell and J. P. Spinrad. Modular decomposition and transitive orientation. Discrete
Mathematics, 201(1-3):189–241, 1999.

25

[10] G. B. Mertzios, 2009. Private communications.

[11] G. B. Mertzios, I. Sau, and S. Zaks. The recognition of tolerance and bounded tolerance graphs
is NP-complete. Technical Report AIB-2009-06, Department of Computer Science, RWTH Aachen
University, April 2009.

[12] J. P. Spinrad. Efficient graph representations, volume 19 of Fields Institute Monographs. American
Mathematical Society, 2003.

26

