V. Chothi
S-integer dynamical systems: periodic points
Chothi, V.; Everest, G.; Ward, T.
Authors
G. Everest
T. Ward
Abstract
We associate via duality a dynamical system to each pair (R_S,x), where R_S is the ring of S-integers in an A-field k, and x is an element of R_S\{0}. These dynamical systems include the circle doubling map, certain solenoidal and toral endomorphisms, full one- and two-sided shifts on prime power alphabets, and certain algebraic cellular automata. In the arithmetic case, we show that for S finite the systems have properties close to hyperbolic systems: the growth rate of periodic points exists and the periodic points are uniformly distributed with respect to Haar measure. The dynamical zeta function is in general irrational however. For S infinite the systems exhibit a wide range of behaviour. Using Heath-Brown's work on the Artin conjecture, we exhibit examples in which S is infinite but the upper growth rate of periodic points is positive.
Citation
Chothi, V., Everest, G., & Ward, T. (1997). S-integer dynamical systems: periodic points. Journal für die reine und angewandte Mathematik, 1997(489), 99-132. https://doi.org/10.1515/crll.1997.489.99
Journal Article Type | Article |
---|---|
Publication Date | Jan 1, 1997 |
Deposit Date | Oct 12, 2012 |
Publicly Available Date | Mar 18, 2014 |
Journal | Journal für die reine und angewandte Mathematik |
Print ISSN | 0075-4102 |
Electronic ISSN | 1435-5345 |
Publisher | De Gruyter |
Peer Reviewed | Peer Reviewed |
Volume | 1997 |
Issue | 489 |
Pages | 99-132 |
DOI | https://doi.org/10.1515/crll.1997.489.99 |
Public URL | https://durham-repository.worktribe.com/output/1502386 |
Files
Accepted Journal Article
(394 Kb)
PDF
You might also like
An introduction to Number Theory
(2011)
Book
An Introduction to Number Theory
(2005)
Book
Recurrence Sequences
(2003)
Book
Downloadable Citations
About Durham Research Online (DRO)
Administrator e-mail: dro.admin@durham.ac.uk
This application uses the following open-source libraries:
SheetJS Community Edition
Apache License Version 2.0 (http://www.apache.org/licenses/)
PDF.js
Apache License Version 2.0 (http://www.apache.org/licenses/)
Font Awesome
SIL OFL 1.1 (http://scripts.sil.org/OFL)
MIT License (http://opensource.org/licenses/mit-license.html)
CC BY 3.0 ( http://creativecommons.org/licenses/by/3.0/)
Powered by Worktribe © 2024
Advanced Search