Skip to main content

Research Repository

Advanced Search

On the geometry of spaces of oriented geodesics.

Alekseevsky, D.V.; Guilfoyle, B.; Klingenberg, W.

Authors

D.V. Alekseevsky

B. Guilfoyle



Abstract

Let M be either a simply connected pseudo-Riemannian space of constant curvature or a rank one Riemannian symmetric space, and consider the space L(M) of oriented geodesics of M. The space L(M) is a smooth homogeneous manifold and in this paper we describe all invariant symplectic structures, (para)complex structures, pseudo-Riemannian metrics and (para)Kähler structure on L(M).

Citation

Alekseevsky, D., Guilfoyle, B., & Klingenberg, W. (2011). On the geometry of spaces of oriented geodesics. Annals of Global Analysis and Geometry, 40(4), 389-409. https://doi.org/10.1007/s10455-011-9261-5

Journal Article Type Article
Publication Date 2011-12
Deposit Date Dec 21, 2011
Journal Annals of Global Analysis and Geometry
Print ISSN 0232-704X
Electronic ISSN 1572-9060
Publisher Springer
Peer Reviewed Peer Reviewed
Volume 40
Issue 4
Pages 389-409
DOI https://doi.org/10.1007/s10455-011-9261-5
Public URL https://durham-repository.worktribe.com/output/1500842