Dr Lore Thaler lore.thaler@durham.ac.uk
Professor
Neuropsychological evidence suggests that different brain areas may be involved in movements that are directed at visual targets (e.g., pointing or reaching), and movements that are based on allocentric visual information (e.g., drawing or copying). Here we used fMRI to investigate the neural correlates of these two types of movements in healthy volunteers. Subjects (n = 14) performed right hand movements in either a target-directed task (moving a cursor to a target dot) or an allocentric task (moving a cursor to reproduce the distance and direction between two distal target dots) with or without visual feedback about their hand movement. Movements were monitored with an MR compatible touch panel. A whole brain analysis revealed that movements in allocentric conditions led to an increase in activity in the fundus of the left intra-parietal sulcus (IPS), in posterior IPS, in bilateral dorsal premotor cortex (PMd), and in the lateral occipital complex (LOC). Visual feedback in both target-directed and allocentric conditions led to an increase in activity in area MT+, superior parietal–occipital cortex (SPOC), and posterior IPS (all bilateral). In addition, we found that visual feedback affected brain activity differently in target-directed as compared to allocentric conditions, particularly in the pre-supplementary motor area, PMd, IPS, and parieto-occipital cortex. Our results, in combination with previous findings, suggest that the LOC is essential for allocentric visual coding and that SPOC is involved in visual feedback control. The differences in brain activity between target-directed and allocentric visual feedback conditions may be related to behavioral differences in visual feedback control. Our results advance the understanding of the visual coordinate frame used by the LOC. In addition, because of the nature of the allocentric task, our results have relevance for the understanding of neural substrates of magnitude estimation and vector coding of movements.
Thaler, L., & Goodale, M. (2011). Neural substrates of visual spatial coding and visual feedback control for hand movements in allocentric and target-directed tasks. Frontiers in Human Neuroscience, 5, Article 92. https://doi.org/10.3389/fnhum.2011.00092
Journal Article Type | Article |
---|---|
Publication Date | Aug 31, 2011 |
Deposit Date | Feb 29, 2012 |
Publicly Available Date | Mar 9, 2012 |
Journal | Frontiers in Human Neuroscience |
Electronic ISSN | 1662-5161 |
Publisher | Frontiers Media |
Peer Reviewed | Peer Reviewed |
Volume | 5 |
Article Number | 92 |
DOI | https://doi.org/10.3389/fnhum.2011.00092 |
Keywords | fMRI, Lateral occipital cortex, Egocentric, Sensory–motor control, Vector coding, Magnitude, Numerosity, Number. |
Public URL | https://durham-repository.worktribe.com/output/1480405 |
Published Journal Article
(1.5 Mb)
PDF
Copyright Statement
Copyright: © 2011 Thaler and Goodale. This is an open-access article subject to a non-exclusive license between the authors and Frontiers Media SA, which permits use, distribution and reproduction in other forums, provided the original authors and source are credited and other Frontiers conditions are complied with.
Multisensory perception and decision-making with a new sensory skill
(2023)
Journal Article
Human Echolocators Have Better Localization Off Axis
(2022)
Journal Article
About Durham Research Online (DRO)
Administrator e-mail: dro.admin@durham.ac.uk
This application uses the following open-source libraries:
Apache License Version 2.0 (http://www.apache.org/licenses/)
Apache License Version 2.0 (http://www.apache.org/licenses/)
SIL OFL 1.1 (http://scripts.sil.org/OFL)
MIT License (http://opensource.org/licenses/mit-license.html)
CC BY 3.0 ( http://creativecommons.org/licenses/by/3.0/)
Powered by Worktribe © 2025
Advanced Search