Dr Laura Turnbull-Lloyd laura.turnbull@durham.ac.uk
Associate Professor
Dr Laura Turnbull-Lloyd laura.turnbull@durham.ac.uk
Associate Professor
R.E. Brazier
J. Wainwright
L. Dixon
R. Bol
Many semi-arid areas worldwide are becoming degraded, in the form of C4 grasslands being replaced by C3 shrublands, which causes an increase in surface runoff and erosion, and altered nutrient cycling, which may affect global biogeochemical cycling. The prevention or control of vegetation transitions is hindered by a lack of understanding of their temporal and spatial dynamics, particularly in terms of interactions between biotic and abiotic processes. This research investigates (1) the effects of soil erosion on the δ13C values of soil organic matter (SOM) throughout the soil profile and its implications for reconstructing vegetation change using carbon-isotope analysis and (2) the spatial properties of erosion over a grass-shrub transition to increase understanding of biotic-abiotic interactions by using δ13C signals of eroded material as a sediment tracer. Results demonstrate that the soils over grass-shrub transitions are not in steady state. A complex interplay of factors determines the input of SOM to the surface horizon of the soil and its subsequent retention and turnover through the soil profile. A positive correlation between event runoff and δ13C signatures of eroded sediment was found in all plots. This indicates that the δ13C signatures of eroded sediment may provide a means of distinguishing between changes in erosion dynamics over runoff events of different magnitudes and over different vegetation types. The development of this technique using δ13C signatures of eroded sediment provides a new means of furthering existing understanding of erosion dynamics over vegetation transitions. This is critical in terms of understanding biotic-abiotic feedbacks and the evolution of areas subject to vegetation change in semi-arid environments.
Turnbull, L., Brazier, R., Wainwright, J., Dixon, L., & Bol, R. (2008). Use of carbon isotope analysis to understand semi-arid erosion dynamics and long-term semi-arid land degradation. Rapid Communications in Mass Spectrometry, 22(11), 1697-1702. https://doi.org/10.1002/rcm.3514
Journal Article Type | Article |
---|---|
Acceptance Date | Feb 26, 2008 |
Online Publication Date | Apr 25, 2008 |
Publication Date | Jun 15, 2008 |
Deposit Date | Apr 3, 2012 |
Journal | Rapid Communications in Mass Spectrometry |
Print ISSN | 0951-4198 |
Electronic ISSN | 1097-0231 |
Publisher | Wiley |
Peer Reviewed | Peer Reviewed |
Volume | 22 |
Issue | 11 |
Pages | 1697-1702 |
DOI | https://doi.org/10.1002/rcm.3514 |
Public URL | https://durham-repository.worktribe.com/output/1478735 |
(Dis)connectivity in hydro-geomorphic systems - emerging concepts and their applications
(2023)
Journal Article
About Durham Research Online (DRO)
Administrator e-mail: dro.admin@durham.ac.uk
This application uses the following open-source libraries:
Apache License Version 2.0 (http://www.apache.org/licenses/)
Apache License Version 2.0 (http://www.apache.org/licenses/)
SIL OFL 1.1 (http://scripts.sil.org/OFL)
MIT License (http://opensource.org/licenses/mit-license.html)
CC BY 3.0 ( http://creativecommons.org/licenses/by/3.0/)
Powered by Worktribe © 2025
Advanced Search