J. Wang
The missing massive satellites of the Milky Way
Wang, J.; Frenk, C.S.; Navarro, J.F.; Gao, L.; Sawala, T.
Abstract
Recent studies suggest that only three of the 12 brightest satellites of the Milky Way (MW) inhabit dark matter haloes with maximum circular velocity, Vmax, exceeding ∼30 km s−1. This is in apparent contradiction with the Λ cold dark matter (CDM) simulations of the Aquarius Project, which suggest that MW-sized haloes should have at least eight subhaloes with Vmax > 30 km s−1. The absence of luminous satellites in such massive subhaloes is thus puzzling and may present a challenge to the ΛCDM paradigm. We note, however, that the number of massive subhaloes depends sensitively on the (poorly known) virial mass of the MW, and that their scarcity makes estimates of their abundance from a small simulation set like Aquarius uncertain. We use the Millennium Simulation series and the invariance of the scaled subhalo velocity function (i.e. the number of subhaloes as a function of ν, the ratio of the subhalo Vmax to the host halo virial velocity, V200) to secure improved estimates of the abundance of rare massive subsystems. In the range 0.1 < ν < 0.5, Nsub(>ν) is approximately Poisson distributed about an average given by 〈Nsub〉 = 10.2 (ν/0.15)−3.11. This is slightly lower than that in Aquarius haloes, but consistent with recent results from the Phoenix Project. The probability that a ΛCDM halo has three or fewer subhaloes with Vmax above some threshold value, Vth, is then straightforward to compute. It decreases steeply both with decreasing Vth and with increasing halo mass. For Vth = 30 km s−1, ∼40 per cent of Mhalo = 1012 M⊙ haloes pass the test; fewer than ∼5 per cent do so for Mhalo ≳ 2 × 1012 M⊙ and the probability effectively vanishes for Mhalo ≳ 3 × 1012 M⊙. Rather than a failure of ΛCDM, the absence of massive subhaloes might simply indicate that the MW is less massive than is commonly thought.
Citation
Wang, J., Frenk, C., Navarro, J., Gao, L., & Sawala, T. (2012). The missing massive satellites of the Milky Way. Monthly Notices of the Royal Astronomical Society, 424(4), 2715-2721. https://doi.org/10.1111/j.1365-2966.2012.21357.x
Journal Article Type | Article |
---|---|
Publication Date | Aug 21, 2012 |
Deposit Date | Apr 25, 2013 |
Publicly Available Date | Aug 22, 2014 |
Journal | Monthly Notices of the Royal Astronomical Society |
Print ISSN | 0035-8711 |
Electronic ISSN | 1365-2966 |
Publisher | Royal Astronomical Society |
Peer Reviewed | Peer Reviewed |
Volume | 424 |
Issue | 4 |
Pages | 2715-2721 |
DOI | https://doi.org/10.1111/j.1365-2966.2012.21357.x |
Keywords | Galaxy: abundances, Galaxy: halo, Dark matter. |
Public URL | https://durham-repository.worktribe.com/output/1477871 |
Files
Published Journal Article
(349 Kb)
PDF
Copyright Statement
This article has been accepted for publication in Monthly Notices of the Royal Astronomical Society © 2012 RAS Published by Oxford University Press on behalf of Royal Astronomical Society. All rights reserved.
You might also like
The impact and response of mini-haloes and the interhalo medium on cosmic reionization
(2024)
Journal Article
The FLAMINGO project: revisiting the S8 tension and the role of baryonic physics
(2023)
Journal Article
Where shadows lie: reconstruction of anisotropies in the neutrino sky
(2023)
Journal Article
Downloadable Citations
About Durham Research Online (DRO)
Administrator e-mail: dro.admin@durham.ac.uk
This application uses the following open-source libraries:
SheetJS Community Edition
Apache License Version 2.0 (http://www.apache.org/licenses/)
PDF.js
Apache License Version 2.0 (http://www.apache.org/licenses/)
Font Awesome
SIL OFL 1.1 (http://scripts.sil.org/OFL)
MIT License (http://opensource.org/licenses/mit-license.html)
CC BY 3.0 ( http://creativecommons.org/licenses/by/3.0/)
Powered by Worktribe © 2024
Advanced Search