D.A. Horke
Effect of Internal Energy on the Repulsive Coulomb Barrier of Polyanions
Horke, D.A.; Chatterley, A.S.; Verlet, J.R.R.
Abstract
The nature of the repulsive Coulomb barrier in isolated molecular polyanions is studied by means of the photodetachment dynamics of the S1 excited state of the fluorescein dianion which is bound solely by the repulsive Coulomb barrier. Photoelectron spectra reveal a feature at a constant electron kinetic energy, regardless of the excitation energy. This is explained by using an adiabatic tunneling picture for electron loss through successive repulsive Coulomb barriers correlating to vibrationally excited states. This physical picture is supported by time-resolved photoelectron spectra, showing that the tunneling lifetime is also invariant with excitation energy.
Citation
Horke, D., Chatterley, A., & Verlet, J. (2012). Effect of Internal Energy on the Repulsive Coulomb Barrier of Polyanions. Physical Review Letters, 108(8), Article 083003. https://doi.org/10.1103/physrevlett.108.083003
Journal Article Type | Article |
---|---|
Publication Date | Feb 28, 2012 |
Deposit Date | May 15, 2013 |
Publicly Available Date | Feb 5, 2016 |
Journal | Physical Review Letters |
Print ISSN | 0031-9007 |
Electronic ISSN | 1079-7114 |
Publisher | American Physical Society |
Peer Reviewed | Peer Reviewed |
Volume | 108 |
Issue | 8 |
Article Number | 083003 |
DOI | https://doi.org/10.1103/physrevlett.108.083003 |
Public URL | https://durham-repository.worktribe.com/output/1475865 |
Files
Published Journal Article
(687 Kb)
PDF
Accepted Journal Article
(703 Kb)
PDF
Copyright Statement
Reprinted with permission from the American Physical Society: Physical Review Letters 108, 083003 © (2012) by the American Physical Society. Readers may view, browse, and/or download material for temporary copying purposes only, provided these uses are for noncommercial personal purposes. Except as provided by law, this material may not be further reproduced, distributed, transmitted, modified, adapted, performed, displayed, published, or sold in whole or part, without prior written permission from the American Physical Society.
You might also like
Spectroscopy and dynamics of the hydrated electron at the water/air interface
(2024)
Journal Article
Downloadable Citations
About Durham Research Online (DRO)
Administrator e-mail: dro.admin@durham.ac.uk
This application uses the following open-source libraries:
SheetJS Community Edition
Apache License Version 2.0 (http://www.apache.org/licenses/)
PDF.js
Apache License Version 2.0 (http://www.apache.org/licenses/)
Font Awesome
SIL OFL 1.1 (http://scripts.sil.org/OFL)
MIT License (http://opensource.org/licenses/mit-license.html)
CC BY 3.0 ( http://creativecommons.org/licenses/by/3.0/)
Powered by Worktribe © 2024
Advanced Search