L. Lombriser
Halo modelling in chameleon theories
Lombriser, L.; Koyama, K.; Li, B.
Abstract
We analyse modelling techniques for the large-scale structure formed in scalar-tensor theories of constant Brans-Dicke parameter which match the concordance model background expansion history and produce a chameleon suppression of the gravitational modification in high-density regions. Thereby, we use a mass and environment dependent chameleon spherical collapse model, the Sheth-Tormen halo mass function and linear halo bias, the Navarro-Frenk-White halo density profile, and the halo model. Furthermore, using the spherical collapse model, we extrapolate a chameleon mass-concentration scaling relation from a ΛCDM prescription calibrated to N-body simulations. We also provide constraints on the model parameters to ensure viability on local scales. We test our description of the halo mass function and nonlinear matter power spectrum against the respective observables extracted from large-volume and high-resolution N-body simulations in the limiting case of f(R) gravity, corresponding to a vanishing Brans-Dicke parameter. We find good agreement between the two; the halo model provides a good qualitative description of the shape of the relative enhancement of the f(R) matter power spectrum with respect to ΛCDM caused by the extra attractive gravitational force but fails to recover the correct amplitude. Introducing an effective linear power spectrum in the computation of the two-halo term to account for an underestimation of the chameleon suppression at intermediate scales in our approach, we accurately reproduce the measurements from the N-body simulations.
Citation
Lombriser, L., Koyama, K., & Li, B. (2014). Halo modelling in chameleon theories. Journal of Cosmology and Astroparticle Physics, 2014(03), Article 021. https://doi.org/10.1088/1475-7516/2014/03/021
Journal Article Type | Article |
---|---|
Publication Date | Mar 13, 2014 |
Deposit Date | Jan 13, 2014 |
Publicly Available Date | May 8, 2014 |
Journal | Journal of Cosmology and Astroparticle Physics |
Electronic ISSN | 1475-7516 |
Publisher | IOP Publishing |
Peer Reviewed | Peer Reviewed |
Volume | 2014 |
Issue | 03 |
Article Number | 021 |
DOI | https://doi.org/10.1088/1475-7516/2014/03/021 |
Keywords | Modified gravity, Power spectrum. |
Public URL | https://durham-repository.worktribe.com/output/1473149 |
Files
arXiv version
(1.4 Mb)
PDF
Copyright Statement
arXiv version
You might also like
Where shadows lie: reconstruction of anisotropies in the neutrino sky
(2023)
Journal Article
MGLENS: Modified gravity weak lensing simulations for emulation-based cosmological inference
(2023)
Journal Article
Upscaling ExaHyPE – on each and every core
(2023)
Report
Downloadable Citations
About Durham Research Online (DRO)
Administrator e-mail: dro.admin@durham.ac.uk
This application uses the following open-source libraries:
SheetJS Community Edition
Apache License Version 2.0 (http://www.apache.org/licenses/)
PDF.js
Apache License Version 2.0 (http://www.apache.org/licenses/)
Font Awesome
SIL OFL 1.1 (http://scripts.sil.org/OFL)
MIT License (http://opensource.org/licenses/mit-license.html)
CC BY 3.0 ( http://creativecommons.org/licenses/by/3.0/)
Powered by Worktribe © 2025
Advanced Search