R. Miles
Periodic point data detects subdynamics in entropy rank one
Miles, R.; Ward, T.
Authors
T. Ward
Abstract
A framework for understanding the geometry of continuous actions of Z^d was developed by Boyle and Lind using the notion of expansive behaviour along lower-dimensional subspaces. For algebraic Zd-actions of entropy rank one, the expansive subdynamics are readily described in terms of Lyapunov exponents. Here we show that periodic point counts for elements of an entropy rank-one action determine the expansive subdynamics. Moreover, the finer structure of the non-expansive set is visible in the topological and smooth structure of a set of functions associated to the periodic point data.
Citation
Miles, R., & Ward, T. (2006). Periodic point data detects subdynamics in entropy rank one. Ergodic Theory and Dynamical Systems, 26(6), 1913-1930. https://doi.org/10.1017/s014338570600054x
Journal Article Type | Article |
---|---|
Publication Date | Dec 1, 2006 |
Deposit Date | Oct 12, 2012 |
Publicly Available Date | Oct 24, 2012 |
Journal | Ergodic Theory and Dynamical Systems |
Print ISSN | 0143-3857 |
Electronic ISSN | 1469-4417 |
Publisher | Cambridge University Press |
Peer Reviewed | Peer Reviewed |
Volume | 26 |
Issue | 6 |
Pages | 1913-1930 |
DOI | https://doi.org/10.1017/s014338570600054x |
Public URL | https://durham-repository.worktribe.com/output/1473112 |
Files
Published Journal Article
(238 Kb)
PDF
Accepted Journal Article
(139 Kb)
PDF
Copyright Statement
© Copyright Cambridge University Press 2006. This paper has been published in a revised form subsequent to editorial input by Cambridge University Press in "Ergodic theory and dynamical systems" (26: 6 (2006) 1913-1930) http://journals.cambridge.org/action/displayJournal?jid=ETS
You might also like
Book review: "Automorphisms and equivalence relations in topological dynamics"
(2015)
Journal Article
Directional uniformities, periodic points, and entropy
(2015)
Journal Article
Homogeneous dynamics: a study guide
(2015)
Book Chapter
Dynamical invariants for group automorphisms
(2015)
Book Chapter
Towards a Pólya–Carlson dichotomy for algebraic dynamics
(2014)
Journal Article