R. Miles
Periodic point data detects subdynamics in entropy rank one
Miles, R.; Ward, T.
Authors
T. Ward
Abstract
A framework for understanding the geometry of continuous actions of Z^d was developed by Boyle and Lind using the notion of expansive behaviour along lower-dimensional subspaces. For algebraic Zd-actions of entropy rank one, the expansive subdynamics are readily described in terms of Lyapunov exponents. Here we show that periodic point counts for elements of an entropy rank-one action determine the expansive subdynamics. Moreover, the finer structure of the non-expansive set is visible in the topological and smooth structure of a set of functions associated to the periodic point data.
Citation
Miles, R., & Ward, T. (2006). Periodic point data detects subdynamics in entropy rank one. Ergodic Theory and Dynamical Systems, 26(6), 1913-1930. https://doi.org/10.1017/s014338570600054x
Journal Article Type | Article |
---|---|
Publication Date | Dec 1, 2006 |
Deposit Date | Oct 12, 2012 |
Publicly Available Date | Oct 24, 2012 |
Journal | Ergodic Theory and Dynamical Systems |
Print ISSN | 0143-3857 |
Electronic ISSN | 1469-4417 |
Publisher | Cambridge University Press |
Peer Reviewed | Peer Reviewed |
Volume | 26 |
Issue | 6 |
Pages | 1913-1930 |
DOI | https://doi.org/10.1017/s014338570600054x |
Public URL | https://durham-repository.worktribe.com/output/1473112 |
Files
Published Journal Article
(238 Kb)
PDF
Accepted Journal Article
(139 Kb)
PDF
Copyright Statement
© Copyright Cambridge University Press 2006. This paper has been published in a revised form subsequent to editorial input by Cambridge University Press in "Ergodic theory and dynamical systems" (26: 6 (2006) 1913-1930) http://journals.cambridge.org/action/displayJournal?jid=ETS
You might also like
An introduction to Number Theory
(2011)
Book
An Introduction to Number Theory
(2005)
Book
Recurrence Sequences
(2003)
Book
Downloadable Citations
About Durham Research Online (DRO)
Administrator e-mail: dro.admin@durham.ac.uk
This application uses the following open-source libraries:
SheetJS Community Edition
Apache License Version 2.0 (http://www.apache.org/licenses/)
PDF.js
Apache License Version 2.0 (http://www.apache.org/licenses/)
Font Awesome
SIL OFL 1.1 (http://scripts.sil.org/OFL)
MIT License (http://opensource.org/licenses/mit-license.html)
CC BY 3.0 ( http://creativecommons.org/licenses/by/3.0/)
Powered by Worktribe © 2024
Advanced Search