T Ward
The Bernoulli property for expansive Z^2 actions on compact groups
Ward, T
Authors
Abstract
We show that an expansive Z^2 action on a compact abelian group is measurably isomorphic to a two-dimensional Bernoulli shift if and only if it has completely positive entropy. The proof uses the algebraic structure of such actions described by Kitchens and Schmidt and an algebraic characterisation of the K property due to Lind, Schmidt and the author. As a corollary, we note that an expansive Z^2-action on a compact abelian group is measurably isomorphic to a Bernoulli shift relative to the Pinsker algebra. A further corollary applies an argument of Lind to show that an expansive K action of Z^2 on a compact abelian group is exponentially recurrent. Finally an example is given of measurable isomorphism without topological conjugacy for Z^2-actions.
Citation
Ward, T. (1992). The Bernoulli property for expansive Z^2 actions on compact groups. Israel Journal of Mathematics, 79(2-3), 225-249. https://doi.org/10.1007/bf02808217
Journal Article Type | Article |
---|---|
Publication Date | Jan 1, 1992 |
Deposit Date | Oct 11, 2012 |
Publicly Available Date | Oct 16, 2012 |
Journal | Israel Journal of Mathematics |
Print ISSN | 0021-2172 |
Electronic ISSN | 1565-8511 |
Publisher | Springer |
Peer Reviewed | Peer Reviewed |
Volume | 79 |
Issue | 2-3 |
Pages | 225-249 |
DOI | https://doi.org/10.1007/bf02808217 |
Public URL | https://durham-repository.worktribe.com/output/1472369 |
Files
Accepted Journal Article
(434 Kb)
PDF
Copyright Statement
The original publication is available at www.springerlink.com
You might also like
Book review: "Automorphisms and equivalence relations in topological dynamics"
(2015)
Journal Article
Directional uniformities, periodic points, and entropy
(2015)
Journal Article
Homogeneous dynamics: a study guide
(2015)
Book Chapter
Dynamical invariants for group automorphisms
(2015)
Book Chapter
Towards a Pólya–Carlson dichotomy for algebraic dynamics
(2014)
Journal Article