M. Einsiedler
Entropy geometry and disjointness for zero-dimensional algebraic actions
Einsiedler, M.; Ward, T.
Authors
T. Ward
Abstract
We show that many algebraic actions of higher-rank abelian groups on zero-dimensional compact abelian groups are mutually disjoint. The proofs exploit differences in the entropy geometry arising from subdynamics and a form of Abramov-Rokhlin formula for half-space entropies.
Citation
Einsiedler, M., & Ward, T. (2005). Entropy geometry and disjointness for zero-dimensional algebraic actions. Journal für die reine und angewandte Mathematik, 584, 195-214. https://doi.org/10.1515/crll.2005.2005.584.195
Journal Article Type | Article |
---|---|
Publication Date | Jul 1, 2005 |
Deposit Date | Oct 12, 2012 |
Publicly Available Date | Mar 18, 2014 |
Journal | Journal für die reine und angewandte Mathematik |
Print ISSN | 0075-4102 |
Electronic ISSN | 1435-5345 |
Publisher | De Gruyter |
Peer Reviewed | Peer Reviewed |
Volume | 584 |
Pages | 195-214 |
DOI | https://doi.org/10.1515/crll.2005.2005.584.195 |
Public URL | https://durham-repository.worktribe.com/output/1472257 |
Files
Published Journal Article
(217 Kb)
PDF
Copyright Statement
The final publication is available at www.degruyter.com
You might also like
Book review: "Automorphisms and equivalence relations in topological dynamics"
(2015)
Journal Article
Directional uniformities, periodic points, and entropy
(2015)
Journal Article
Homogeneous dynamics: a study guide
(2015)
Book Chapter
Dynamical invariants for group automorphisms
(2015)
Book Chapter
Towards a Pólya–Carlson dichotomy for algebraic dynamics
(2014)
Journal Article