J. reine angew. Math. 584 (2005), 195214 Journal fiir die reine und
angewandte Mathematik

© Walter de Gruyter
Berlin - New York 2005

Entropy geometry and disjointness for
zero-dimensional algebraic actions

By Manfred FEinsiedler at Seattle and Thomas Ward at Norwich

Abstract. We show that many algebraic actions of higher-rank abelian groups on
zero-dimensional compact abelian groups are mutually disjoint. The proofs exploit differ-
ences in the entropy geometry arising from subdynamics and a form of Abramov-Rokhlin
formula for half-space entropies. []

We discuss some mutual disjointness properties of algebraic actions of higher-rank
abelian groups on zero-dimensional compact abelian groups. The tools used are a version
of the half-space entropies introduced by Kitchens and Schmidt [14] and adapted by Ein-
siedler [7], a basic geometric entropy formula from [7], and the structure of expansive sub-
dynamics for algebraic Z¢-actions due to Einsiedler, Lind, Miles and Ward [9]. We show
that any collection of algebraic Z?-actions on zero-dimensional groups with entropy rank
or co-rank one that look sufficiently different are mutually disjoint. The main results are the
following (here N(-) denotes the set of non-expansive directions; non-expansive directions
and mutual disjointness are defined in Section 1).

Theorem 5.1. Let Xy, ..., X, be a collection of irreducible algebraic zero-dimensional
Z-actions, all with entropy rank one. If

N(Of,i)\kU‘N(Ofk) 0 forj=1,....n
>j

then the systems are mutually disjoint.

The simplest illustration of Theorem 5.1 is the fact that Ledrappier’s Example 2.3 and
its mirror image are disjoint. This is shown directly in Section 3 to illustrate how the
Abramov-Rokhlin formula for half-space entropies may be used.

Theorem 6.2. Let Y and Z be prime Z%-actions with entropy co-rank one. If
N(ay) # N(az), then Y and Z are disjoint.

The first author was supported by the Erwin Schrodinger Stipendium J2090 and the Center for Dynamical
Systems at Penn State University.
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Once again the simplest illustration of the meaning of this result comes from an ex-
ample of Ledrappier type: Example 6.3 is a three-dimensional analogue of Ledrappier’s
example. This is a Z*-action defined by a ‘four-dot’ condition which has positive entropy
Z?-subactions; it and its mirror image are disjoint.

Surprisingly, it is not the familiar presence of different non-mixing sets but the en-
tropy and subdynamical geometry of the systems that forces this high level of measurable
difference of structure. The methods should extend to entropy rank or co-rank greater than
one, but the notational and technical difficulties become more substantial. Related work for
Z“-actions by toral automorphisms has been done by Kalinin and Katok [11], where more
refined information is found about joinings and the consequences of the presence of non-
trivial joinings. Actions by toral automorphisms automatically have entropy rank not ex-
ceeding one.

Our purpose here is to begin to address some of the problems inherent in under-
standing the joinings between algebraic Z¢-actions. The ultimate goal is to extend results
like those of [11] to general algebraic actions, just as the rigidity results have been extended
from the toral case in [13], to irreducible actions in [15]. In the rigidity theory, entropy rank
one also has a privileged position (see [3], [4] for the details of how entropy rank influences
rigidity).

A Z%action is called irreducible if it has no closed invariant infinite proper sub-
groups. Irreducible actions on connected and zero-dimensional groups are extensively
studied because they exhibit rigidity for d = 2 (cf. [11], [12], [15]). The class of actions with
entropy rank one is a natural extension of the class of irreducible actions (see [8]).

Irreducible actions on zero-dimensional groups are a natural analogue of irreducible
actions on finite-dimensional tori and solenoids, see [8]. In particular, both types of action
allow a local description using locally compact fields. While R, C and finite extensions of
Q, are used for the toral and solenoidal cases, for irreducible actions on zero-dimensional
groups locally compact fields of positive characteristic are used, namely fields of Laurent
series in one variable over a finite field (see [6] and [8] for how this works). Using the local
isometry to a product of local fields, one can define Lyapunov exponents and foliations of
the spaces just as for the toral case. For our purpose it is simpler to use half-space entropies
instead of ultrametric Lyapunov exponents. Half-space entropies were introduced in [14]
and adapted to be defined via state partitions in [7]. The notion of entropy geometry for
actions of higher-rank groups was introduced by Milnor in [17] in the setting of cellular
automata.

A special case showing how the entropy geometry gives insight into joinings is dealt
with in Section 3, and this can be read independently of the rest of the paper (up to ac-
cepting some plausible results on entropy geometry proved elsewhere).

1. Introduction
An algebraic Z%-action is an action of Z“ generated by d commuting auto-

morphisms of a compact abelian metrizable group X . Duality (in the sense of Pontryagin)
gives a one-to-one correspondence between countable modules M, N,... over the ring
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R, = Z[uf—rl,...,u;—rl] and algebraic Z%-actions Xy, = (Xar, 007), Xw, ... (see [19] for an
overview of how this correspondence has been used to study algebraic dynamical systems).
It is convenient to write monomials (units) in R, in the form u” = u}" - - - u)’.

An algebraic dynamical system X = (X, o) automatically preserves the Haar mea-
sure A = Ay on X; we reserve A for Haar measures and u for any a-invariant probability
measure.

The results on expansive subdynamics we need come from [9]: If o is a Z“%-action by
homeomorphisms of a compact metric space (X,p), then N(x) denotes the set of non-
expansive vectors v € R?\{0}. That is, » € N(c) if and only if for every & > 0 there exists a
pair of points x + y in X with the property that

pla"x,a"y) <e forallme {meZ?|v-m<0}.
The whole action is called expansive if there is an ¢ > 0 with the property that
p(a"x,a"y) <e forallmez? = x=y.

Let o be an expansive algebraic Z%-action on a zero-dimensional group X. By [7],
Lemma 7.1, such an action is automatically an algebraic Markov shift in the following
sense: There are integers ¢ and s and a module of relations J = (Ry/ (q))s such that

(1) X = J* < ((2/q2)")",

where =~ denotes an algebraic isomorphism of Z(‘f—actions and J* denotes the annihilator
of the submodule J in the dual group ((Z/ qZ)“')Z of the Ry-module (Ry/(¢))’. Under the
isomorphism in (1), the Z%-action on X corresponds to the natural shift action on J=.
Having chosen such a presentation of the system, there is an associated (non-canonical)
state partition & = &(q,s,J) comprising the ¢° cylinder sets obtained by specifying the 0
coordinate (some of these sets may be empty).

Given a Z%-action « by measure-preserving transformations on (X, u) and any mea-
surable partition # of X, write

neAnz?

for the join of # over any set A = R. The conditional entropy of 4 given B with respect to
n and w is defined to be H,(n"|n?). For a fixed 7 (for instance the state partition for a fixed
presentation), we simply write H,(A|B) for this conditional entropy.

The following terminology comes from [5] and (in this context) [9], and the resulting
condition for vanishing entropy, which holds for any invariant measure g, is the first key
observation in our work. In the system Xy, = (Xu, o57), a set 4 ¢ RY codes B = R if for
every m € B Z¢ there exists a polynomial

S = > fu"

neAnz¢
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such that (u™ — f)M = 0),. Viewing X}, in the form (1), this means that knowledge of the
coordinates (X,),,. 4 of a point x € X, determines uniquely the coordinates (x,,) No-
tice that

meB-*

® 4 codes B= H,(A|B) = 0;
e A codes B= A+ ncodes B+ nforeveryne Z%;
® 4 codes B, Au B codes C = A codes Bu C.
A joining of a finite collection of Z?-actions
Xi= (X, ), 1=i=n,

is a measure x on X X --- X X, invariant under o; X --- X o, and with the property that
the projection of x onto the ith coordinate is x4, for each i. Write J(X|,...,X,) for the
collection of all joinings of X, ..., X,. The systems are called mutually disjoint if the only
joining is the product measure, so J(X,...,X,) = {g x -+ x u,}. For n = 2 this property
is simply called disjointness.

The major simplifying assumption we make is to restrict the entropy rank: o has en-
tropy rank one if there exists a cyclic subgroup of Z¢ with positive entropy (viewed as a Z-
action) but all rank two subgroups of Z¢ act with zero entropy. Similarly, « has entropy
rank k < d if there is a rank k subgroup of Z¢ acting with positive entropy (when viewed as
a Z*-action) but all subgroups of rank (k + 1) act with zero entropy; finally « has entropy
rank d if it has positive entropy as a Z“-action. Similarly, o has entropy co-rank k if it has
entropy rank (d — k). Entropy rank in this context comes from [9], Sect. 7, and the special
properties of rank one systems are studied in [8] and [10].

2. Entropy geometry for d = 2

The results from [7] summarized and extended in this section require the entropy co-
rank to be one. On the other hand, many technical simplifications are possible when the
entropy rank is one. In order to have both conditions, d = 2 in this section. We will see in
Section 4 that this does not restrict the applications to rigidity for larger values of d. By [9],
for such actions every element of the non-expansive set is a scalar multiple of an integer
vector. This is illustrated in Example 2.3 below, where the non-expansive set is described
explicitly for an example.

Definition 2.1. Let x be an invariant measure on the zero-dimensional expansive

algebraic system X = (X, «) presented as in (1). Let v € Z?\{0} be a vector with associated
half-space H, = {n e Z*|v-n < 0}. The half-space entropy of v is

(2) h(v) = Hy (&™)
where ¢ is the state partition (for a fixed presentation) and

vE={teZ*|v-t=0}.
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If % is an a-invariant g-algebra, then similarly define the conditional half-space entropy of v
to be

h,(0|%) = H, (& | v @)
For a vector v € Z*\{0}, let v* be a primitive vector in Z> chosen so that
H, +v*=H,upt :{n622|v-n§0}
and let Z(v, r) be chosen so that
v+ (=£(v,r), £(v,r))v" 20" + B(r),
where B(r) denotes the closed Euclidean ball of radius r in R* centered at the origin.

The half-space entropy from [7] defined by (2) differs from the entropies used in [14]
in that it depends a priori on the choice of presentation (1) and only turns out after the
event to be invariant under algebraic isomorphism. The more robust half-space entropies in
[14] are automatically invariant under measurable isomorphism (under suitable hypotheses
rigidity makes measurable and algebraic isomorphism coincide). For Haar measure the two
entropies coincide.

Lemma 2.2. Let X = (X,a) be a zero-dimensional expansive algebraic Z%-action.
The half-space entropy function h, : Z*\{0} — Ry is independent of the choice of the pa-
rameters ¢, s and the module of relations J in the presentation

n s Za’
X =J" < ((z/qz)")
of the system X.
Proof. Let (X, o) be an expansive zero-dimensional Z>-action and assume that
al n2Z*
X =J' < ((z/qz)")
and
1 nZ?
X1t < ((z/rz)")
are two presentations of the system giving corresponding state partitions ¢ and # with cor-
responding half-space entropy functions hj and hZ. This means that there is an R,-module
isomorphism between R3/J and Rj/I. Dual to this isomorphism of R,-modules there is a
continuous isomorphism of compact groups from 7+ to J*: It follows that there exists an
r > 0 with the property that
&P op and pf0 o2&

Standard properties of entropy and the inclusions

fvi - ,]vL+B(r) and fH” 5 nHLf/(v?r)v*
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imply that
L Hv 1 B(r vaf , *
H, (&7 €M) < Hy(nt HP0 o0,

To obtain a sharper statement, notice that the invariance of the measure implies (or use [7],
Prop. 8.3, for d = 2)

1

HAE 1) =y Hu(E )
1 , ot He oo
<y Huln? T/ DA
N +2/(v,r)

1)l y
Hu (1" ™).

N

It follows that
B(0) = H(E 1Y) < H " ™) = B)(0),
so by symmetry hg(v) =hj(v). O

A similar argument shows that the half-space entropy remains well-defined when
conditioned on an invariant g-algebra: If % is a g-algebra in J* (in the notation of the
proof of Lemma 2.2) with €’ its image under the isomorphism, then

(3) b (v|%) = hj(0]").

Example 2.3. The archetypal example of a zero-dimensional system with entropy
rank one is due to Ledrappier [16]: Let

Xy ={xe [Ff2 | Xn + Xnte; + Xnte, =0 forallme Zz},

with o the Z%-action defined by the natural shift action, and 4 = Ay, the Haar measure.
Then (cf. [9], Ex. 5.6) ve N(«;) if and only if v is parallel to an outward normal of the
convex hull of the set

L ={(0,0),(0,1),(1,0)}.

Similarly, the half-space entropy h;(v) is positive if and only if v is parallel to an outward
normal of the convex hull of the set L.

For a polynomial f € R, with f(u) = > f,u", the Newton polygon A"(f) of f is the
convex hull of the support {n| f, +0}.  nez?

In Example 2.3 it is not a coincidence that the set of points whose convex hull de-
termines the non-expansive directions is exactly the support of the polynomial 1 + u; + up
generating the module of relations. The same holds more generally when the entropy co-
rank is one—see [9] for the details.
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The following properties hold for any expansive Z>-action oy, on a zero-dimensional
group X, with entropy rank one, presented as in (1), and for any « = o,,-invariant mea-
sure 2 on Xjy. It is useful to talk in terms of directions: a vector v € R*\{0} defines a ray

r(v) ={tw|tel0,00)};

vectors v and w are in the same direction if their rays coincide, and a vector v is in a rational
direction if there is a vector w € Q¢ with r(v) = r(w).

e There is an annihilating polynomial f € R, with the property that fM = 0, and
each vertex coefficient of f is coprime to g.

¢ For every direction v, h,(v) < co.
® If v is not an outward normal vector to an edge of .A"(f'), then h,(v) = 0.
® Hence, h,(v) > 0 only for v in finitely many directions, all of them rational.

The entropy formula in Theorem 2.4 relates the half-space or geometric entropies A(-)
defined by (2) to the dynamical entropies /(-) of individual elements. In the case of higher
entropy rank, an analogous formula relates the entropy of subactions of the appropriate
rank to geometric entropies of the same rank.

Theorem 2.4. Let (X, o) be a zero-dimensional algebraic Z*-action with entropy rank
one, let u be any o-invariant measure on X, and let € be any o-invariant o-algebra. Then

(4) h (€)= > (v- m)hy(v|)

v-n>0

where the sum is taken over all primitive integer vectors v with v -n > 0.

The unconditioned version of this is proved in [7]; making the obvious modifications
to that proof shows Theorem 2.4. Notice that the left-hand side is the usual dynamical
(conditional) entropy of the measure-preserving transformation «” while the right-hand
side involves only the half-space or geometrical (conditional) entropies.

The half-space entropies also obey a form of Abramov-Rokhlin entropy addition
formula (cf. [1], [20]). This result will only be needed under the additional assumption that
the map ¢ is a group homomorphism.

Theorem 2.5. Let ¢ : X — Y be a continuous surjective map between zero-dimensional
expansive entropy rank one algebraic 7>-systems. Assume that ¢ sends the invariant measure
won X to the invariant measure v on Y. Then, for any non-zero vector v € 72,

(5) hu(v) = hy(0) + (0] ¢ (#y))
where By denotes the Borel g-algebra on Y.

Proof.  Assume that X and Y have been presented in the form (1), with correspond-
ing state partitions ¢ and 5. In (5), h,(-), h,(-) are defined using &, # respectively. Since the
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half-space entropies are independent of the chosen presentation of the system we can as-
sume without loss of generality that ¢ 'y < &. Then

o = Lo
1 v 1 ot o L ot N
= H@7 )T ) (e S T
iN vt v +[0,n)p*
=5 3 Hullg ) I (g )
+ % ) H, (gvl“’v* , EHe o (07 40.mp0%) |, (¢71’7)vl+[0,N)v*).
n=0
Now
1 N-1 Lo . *
N Hﬂ((¢—1’7)v ) |éH” V<¢—1’7>v +[0,n)v )
n=0
lN ! — vi4n* ~1 Ul+[0,n)v*
<~ X @ @ v ) )
n=0
= H,((¢0"' )" 1 (¢”"'m)"™)
= H,(1" ™)
= h,(v).

On the other hand, for fixed n

H, (" Heo(o  +0m0%) (g lye 0Ny g (&0 | v g7 (3y)

as N — oo by Martingale convergence. It follows that
1 N— L n L n
NZ: ( +v|éuuv+0 (¢ ’7) ON))

— H,(¢" | v g7 (By)) = hu(v] ¢ (2y)).
This shows that
(6) hy(v) < hy(0) + (0] 97 (%))

On the other hand, by the classical Abramov-Rokhlin entropy addition formula,

(7) h(o") = hy(@") + hy (2" [ 47 (By)).
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Equation (4) for the trivial o-algebra and the o-algebra 4 = ¢ ' %y together with (6) and
(7) show that

hu(v) = hy(0) + By (0] 67 (B)). O

3. A simple example

In this section we show how to use the entropy geometry of Section 2 to prove that
Ledrappier’s Example 2.3,

Xy ={xe [Ff2 | Xn + Xnte; + Xnie, =0 forallme Zz},
and its close sibling
X, ={xe [Ff2 | Xp + Xnte, + Xn_e, = 0 for all n e 7%},
are disjoint. That is, if «; denotes the natural shift action on X;, and X; = (X;,o;), then
J(X1,Xa2) = {Ax, X Ax,}. Let X =X; x X5, and write « for the Cartesian product of the
two Z2 shift actions. Let x be a joining of the two systems.
A polynomial which annihilates the module corresponding to X is the product
(I+w +w)(1+u +u') =" +uy ' +uf +ur + ugu,
with Newton polygon shown in Figure 1. Write 4, for the Borel g-algebra and ./; for the

trivial g-algebra on X;, &; for the state partition in X; for i = 1,2, and & = &; x &, for the
state partition in X.

Figure 1. The Newton polygon of the annihilating polynomial

Part of our purpose here is to show how the half-space entropies and the Abramov-
Rokhlin formula for half-space entropies in Theorem 2.5 allow joinings to be understood.
The first proof below uses the classical Abramov-Rokhlin formula and the entropy formula
Theorem 2.4. The second, much shorter, proof uses Theorem 2.5.

3.1. Proof of disjointness using Theorem 2.4. By Section 2,

(8) () = hy(e2) + hu(er + €2).
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On the other hand, projecting onto X7 gives a factor of «, so by the Abramov-Rokhlin
formula and Theorem 2.4

9) () = hy, () + (0 [ 81 x A3)
h,‘bl(Osz) +hﬂ(e2 ’@1 X JVQ) +h‘u(£’1 + e ’@1 X JVQ)

Since f[IRX(*%’O) = B,

hﬂ(ez ‘ B X ,/Vz) = HN(fRX{O} |fRX(7w’O) v B X JVz)

_ HH(fRX{O} |5R><(—m,0))

= hy,(e2).
Similarly,
(10) hy(ey +exy| %) x N3) =0,
and so by comparing (8), (9) and (10),
(11) hy, (0?) = hy(ey + e2).

Projecting onto X, gives a different factor of « and a similar argument shows that
(12) hin(03°) = hy(e2).
Theorem 2.4, (11) and (12) together show that
hy(07) = hy(e2) + hu(er + e2)
= hy,(0°) + hy, (o))

= log4
= Iy (a®72).
That is, the joining measure u is a measure of maximal entropy for the transformation
afte Since ot is itself an ergodic automorphism of a compact group with finite en-
tropy, it follows from [2] that
u = A= }"Xl X /1X2.

Thus the systems X; and X, are disjoint.

3.2. Proof of disjointness using Theorem 2.5. By the Abramov-Rokhlin formula for
half-space entropies,

hﬂ(ez) = hgz(ez) + hﬂ(ez ’ N X @2) = log?2,
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where we use the fact that &, (e2) = h), () = log 2. Similarly
h,(ei +e) = h; (e; +er) + hy(e) +er| B x AN3) = log2,
so by Theorem 2.4 the entropy of the map o satisfies
hu(0?) = hy(e2) + hyu(er + e2) = logd = h(a®).

That is, the joining measure x is maximal for the transformation o®. Since o is itself an
ergodic automorphism of a compact group with finite entropy, it follows again from [2]
that 4 = 4 = Ax, X dx,. Thus the systems X; and X, are disjoint.

4. Reduction step

In this section we give a corollary to the considerations in Section 2, allowing mutual
disjointness for entropy rank one examples to be shown inductively. Recall that an alge-
braic Z“-action on a zero-dimensional group is expansive if and only if the corresponding
R -module is Noetherian (see [19]). Throughout this section X will be an expansive system.

Recall from [5] and [9], Sect. 2, the notion of expansiveness for subsets, and more
specifically for half-spaces H,. Parameterize half-spaces by the outward normal vector v,
and write N (o) for the finite set (see [9], Th. 4.9 and [8], Th. 7.2) of non-expansive half-
spaces.

Theorem4.1. LetY = (Y,oy,Ay) andZ = (Z,0z,u,) be expansive zero-dimensional
algebraic Z-actions with entropy rank one, and let u be in J(Y,Z). If there is an integer
vector ve N(ay)\N(az), then p is invariant under translation by an infinite subgroup
Yo < Y. In the case d = 2,

Yo={yeY|y,=0forneH,}.

Translation in X = Y x Z by an element )’ € Y means translation of the form
(y,z) — (y+ »',z). Notice that u, is any oz-invariant measure, not necessarily Haar
measure.

Proof. The first step is to restrict the action to a Z2-subaction without losing
the hypotheses. By [9], Prop. 7.3, there exists an element o" which acts expansively on
X =Y xZ. Let me Z¢ be linearly independent to n, and write P for the plane in RY
spanned by m and n. Write f§ for the Z>-subaction generated by o* with k € P n Z¢. Simi-
larly, write iy, f8, for the two factors of f on Y and on Z. Then 8, f, and f, are each
expansive Z>-actions. We claim the normal vectors to non-expansive half-spaces for f are
obtained by projecting the normal vectors to non-expansive half-spaces for o onto the plane
P along the orthogonal complement. Thus a half-space in the plane P is non-expansive if
and only if it is contained in a non-expansive half-space for «. This can be seen by a coding
argument similar to the proof of [5], Th. 3.6 (replacing subspaces by half-spaces). Perturb-
ing the plane P slightly does not affect the expansiveness of the subaction by [5], Lemma
3.4. By a small perturbation, one can ensure that those pairs of normal vectors in the finite
set N (o) which define different half-spaces do so in the plane as well. This ensures that there
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is a vector v e N(fy)\N(B,). So, without loss of generality assume now that o is a Z>-
action.

Write 7y : X — Y and 7z : X — Z for the canonical projection maps. Then (writing

as before By, Nw, &y for the Borel g-algebra, trivial o-algebra and state partition in
W =Y or W = Z respectively)

hy(v) = by, (v) + by (v] 7y (%))
= by, (v) + by (v| 7 (82)).
Now
h,(v|ny (By)) =0 and h,, (v)=0
since v ¢ N (o). It follows that
hiy (v) = b (v] 7' (82)),
50
(13) Hy (&5 165) = Hu(& |58 vy (82)).

We will show that this is the maximal possible value for this half-space entropy, and deduce
the desired translation invariance property.

Let

Yo={yeY|y,=0forneH,}
2
and write 7 : Yy — ((Z / qZ)s)vLmZ for the projection map onto the coordinates in v+ N Z>
(Y is presented in the form (1) with state partition &y as usual). Let

(14) ny =& and ¢y =&hor

For a measure v and partition x write [x],. for the atom of the partition x containing x, and
vy for the associated conditional measure (characterised by [ fdvy, = E(f|r)(x) for
f € L'(p)). By definition of 7, and {y the atom [y] _ is a union of atoms [y + »ol¢, with
yo € Yy, where

n

n(yo) = n(yy) = [¥ + yolg, = v+ wole, -

For the Haar measure Ay all those {y-atoms have the same weight with respect to 4, ,,, so
that

H;, (Cylny) = log|n(Yo)|

is finite. The finiteness follows from entropy rank one, see Section 2.
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We return to the study of £ on X = Y x Z. Let , and {y be defined similarly to
(14), using the state partition &y = &y x &5. Let

ﬂ:nxvngl,%’z and C:CXvnglﬁz.

Then each atom [x], is a finite union of atoms [x + yO]g with yo € Yy, where the sum is de-
fined by x + y = x + (»,0). As before,

m(y0) = m(y0) = [x + yol; = Ix + wol;-

By definition, the information function is

I,U(CM) - —IOg :ux,ly[x]C

and the entropy is its integral

HH(CW) = flﬂ(é‘ﬂ) du

=] Z(Y )—ﬂx,n([x + yole) log s, ([x + yol,) du.

The maximum value of the integral is log|n(Yy)|, which is achieved by (13). This happens
only when g, , restricted to the partition

{lx+ wolc [ yo € Yo}

of the atom [x],7 is a uniform distribution almost surely. Since translation by yy € Yy per-
mutes the (-atoms inside a fixed #-atom, we deduce that u(A4) = (4 + y) for any 4 € { and
y € Y. This argument may be repeated for the next layers, using

n'=n and ( =&k

for some n Zd\H,,. As before a restricted version of translation invariance for any 4 e {’
can be shown. Since this holds for all n € Z¢, it follows that x is invariant under translation
by any y € Yj. Since v € N(ay), the subgroup Y} is infinite and the theorem follows. []

5. Applications to disjointness

The results of Section 4 suggest the following approach to mutual disjointness
for systems of this kind. Given a joining u € J(X|,...,X,) of several algebraic systems
Xi,...,X,, look for a vector v that is non-expansive for X; but expansive for
Xy X - -+ x X,,. The proof of Theorem 4.1 gives an equality between two half-space en-
tropies, and then shows that x is invariant under translation by a subgroup. If the group is
large enough, this may be enough to deduce that for almost every x € X, x --- x Xj,, the
conditional measure u, is Haar measure Ay,. This shows that 4 = Ay, x u; for some Borel
probability #; on X> x --- x X,,. If the process can be repeated with y,, then it shows that
the systems are mutually disjoint.
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This approach needs two things to happen. First, the non-expansive sets of the sys-
tems must differ enough to keep producing suitable candidate vectors v. Second—a more
subtle problem—the translation invariance provided by Theorem 4.1 may only give partial
information about the measures. To avoid the latter problem we assume that the systems
are irreducible.

Theorem 5.1. Let Xy,..., X, be a collection of irreducible algebraic zero-dimensional
Z%-actions, all with entropy rank one. If

N(ocj)\kU‘N(ock) +0 forj=1,....n
>j

then the systems are mutually disjoint.

Proof. Let ueJ(Xi,...,X,) be a joining. Assume by induction that for some r > 1
we know that

lu:j'Xl X"'X}“erl X Uy

and let v be a vector in N (o, )\ | N(o). Then u, € J(X,,...,X,). Apply Theorem 4.1 with
k>r
Y = X, and Z = [] X;. Since the actions are irreducible, the subgroup Yj is dense, so the
JEr
translation invariance shows that each fibre of x4 along Y must be Haar measure on Y.
That is, y, = Ay, X y,,, and

W= Ax; X - X Ay, X [ 1,

showing that 4 = ] Ay, by induction. []
J

Since there is a large collection of irreducible polynomials in R,/(p) for any fixed
prime number p, Theorem 5.1 gives the following corollary.

Corollary 5.2.  There is an infinite family of algebraic Z*-actions (on zero-dimensional
groups) with the property that the members of any finite subcollection are mutually disjoint.

Recall that a system X = (X, «) is irreducible if X has no infinite closed a-invariant
subgroups. An irreducible component of a system Y is a closed infinite irreducible invariant
subgroup.

Theorem 5.3. LetY = (Y,ay) and Z = (Z,0z) be ergodic expansive Z%-actions with
entropy rank one on zero-dimensional groups. Assume that for any irreducible component of
Y, there is a vector that is non-expansive on that component, but expansive for az. Then Y
and Z are disjoint.

Proof. Let X=Y x Zand let u e J(Y,Z). Define

Hy = {y € Y | pis invariant under translation by y}.
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Notice that Hy is a closed a-invariant subgroup of Y since u is an a-invariant Borel mea-
sure. If Hy = Y, the measure 4 must be the trivial joining. So assume Hy #+ Y and con-
sider the factors Y/ = Y/Hy and Y’ x Z of Y and X respectively; the factor measure u’ is
a joining between the Haar measure Ay: and Az. Since Y’ is non-trivial and carries an
action of entropy rank one, it must be infinite and therefore contains a non-trivial irreduc-
ible component of entropy rank one. Furthermore, the irreducible components of Y’ are
also irreducible components of Y. So the assumptions of the theorem remain valid. How-
ever, by construction the subgroup

Hy = {ye Y| is invariant under translation by y}

must be trivial. Without loss of generality, we may pick a vector v € Z¢ that is non-
expansive for oy but expansive for oz. By Theorem 4.1 the measure u is invariant under
translation by an infinite subgroup Yy = Y’. This contradiction concludes the proof. [J

6. Entropy co-rank one in higher dimensions

In this section we assume that the actions have entropy co-rank one, allow d = 2, and
show disjointness for such actions. The following replacement for the property of irreduci-
bility is needed. Call an algebraic Z%-action prime if it is of the form X,; for a module
M = R;/p with p a prime ideal in R.

Lemma 6.1. Let Y be a prime 7%-action with entropy rank k > 1. Let Y' < Y be a
closed ay-invariant subgroup such that the restriction ay: of the action to Y' still has entropy
rank k. Then Y' = Y.

That is, there are no non-trivial closed invariant subgroups on which the entropy rank
is k.

Proof.  This is shown in the proof of Theorem 1.2 in Section 6 of [7]. [

Theorem 6.2. Let Y and Z be prime Z%-actions with entropy co-rank one. If
N(ay) # N(az), then Y and Z are disjoint.

In this setting the non-expansive sets are the set of directions v with the property that
the corresponding half-space H, is non-expansive (see [9], Sect. 2). In contrast to the case of
entropy rank one, these sets may be infinite. The next example is the analogue of Section 3
for d = 3.

Example 6.3. Let

X;={xe [Ff3 | Xn + Xnte; + Xnte, + Xnie; =0 forallme 23}
and
X, = {x € F? | Xn + Xn—e; + Xnte, + Xnte; = 0 forallme 73},

with associated shift Z3-actions o; and o,. These two systems are associated to the modules
R3/(2, /1) and R3/(2, f>) where fi(u) =1+u +us+us and fo(u) =1+ uy' + ur + u.
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By [9] these systems have entropy co-rank one, and by [5], Ex. 2.9, N(«;) is the 1-skeleton
of the spherical dual to the Newton polytope A7(f;) for i =1,2. The vector e; lies in
N(on)\N (o), so Theorem 6.2 shows that X; and X, are disjoint.

The assumption that the entropy co-rank is one in Theorem 6.2 does not seem to be
the whole story, since in Sections 4 and 5 we dealt with general Z¢-actions with entropy
rank one. Certainly some condition on the entropy rank is required: If it is allowed to be d,
then the actions have factors that are measurably isomorphic to Bernoulli shifts by [18],
and so have a large space of joinings. The geometric picture for entropy rank £ > 1 is more
complex. To find a restriction of the action to a Z**!'-subaction without losing the as-
sumptions, one needs a more detailed description of N («)—relating its structure to the en-
tropy rank of the action—which is not yet available.

Before we start the proof of Theorem 6.2 we describe the structure of prime actions
with entropy co-rank one, and give some definitions from [7]. If Y is a zero-dimensional
prime action with entropy co-rank one, then Y is the dual group of R;/(p, f) for some
prime number p and polynomial f which is irreducible when considered in R,;/(p) (that
the prime ideal defining the module must have this form when the entropy co-rank is one
follows from [9], Prop. 7.3, which states that the entropy rank of oz, /, is equal to the Krull
dimension of R;/p if the characteristic is positive). Clearly f is defined modulo p, so it is
natural to assume that p does not divide any nonzero coefficient of f. In the proof of
Theorem 6.2 we may assume that Z is defined in the same way by a prime number p’ and a
polynomial f”.

Applying a GL(d,Z) coordinate change (this may be thought of as a ‘time
change’ in the acting group) for the Z“-actions if necessary, we can make the follow-
ing simplifying assumptions. Without loss of generality, —e; lies in N(ay)\N(xz), and
f € Zuy,uy o ujl} is non-zero modulo u;. The condition that —e; € N(ay) translates to
the property that f = fo+ fim for some fi € Z[uy,ui', ..., ur'] and foye Z[ut', ... ui']
which is not a monom1al by [9] Th. 4.9 and Ex. 5.7. Moreover, we can assume that
feZu,. .. usr,ur'l,and £(0,...,0,us) = £o(0,...,0,us) € Z[uy] is not a monomial (cf.
[7], Lemma 9 9). For Z we can assume that ' € Z[uy, ..., uy], and

f'(0,...,0,uy) £0
is a multiple of a single monomial.

We recall a special case of the notion of lexicographical half-space entropy for an
action of entropy co-rank one from [7]. Let

(15) A =71 x {0}

be the subgroup generated by the first (d — 1) standard basis vectors. Define lexico-
graphical orders

m<,,n if (my,...,mg_1) <iex (n1,...,04-1),

m-<n if m~<,, nand my = ny,
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where <ex is the usual lexicographical order defined by
m<xn iftm =ny,...,m_y=n_1,m <n; forsomei=d.
Then the lexicographical half-space entropy is defined by
hyei,...,eq_15e4) = Hl,(fR”d|fS+R"”),
where ¢ is the state partition and
S={neZ\n>0} cA.

By the remarks above,

h), (e, ...,eq_1;€4) >0
and

hy(e,...,eq_1;e4) =0
since S + Re, does not code Re, for ay, but does for oz, and S + Re, contains e; + H_,,.

Having established these simplifying adjustments and notations, we turn to the proof
of Theorem 6.2.

Proof. Let u be a joining measure, and let f, f’, p, p’ be chosen as above. One
can change the coefficients of f by multiples of p to ensure that the non-zero coefficients
are all coprime to pp’, and similarly for f’. The product ff’ annihilates the R;-module
Ri/(p,f)®Ry/(p',f') dual to X = Y x Z, and every extremal coefficient of ff’ is co-
prime to pp’. Thus X together with ff’ and pp’ satisfy the hypotheses of [7], Lemma 8.2,
and hence the entropy formula in [7], Prop. 8.3 holds for the system: There are only finitely
many directions w ¢ R~ x {0} with positive half-space entropies hu(er, ... eq—1;w),
moreover the sum of these half-space entropies equals the dynamical entropy 4, (xa) of the
action of the subgroup A defined in (15). Moreover, this entropy formula remains valid
when conditioned by an invariant g-algebra. Just as in Theorem 2.5, factoring onto Y gives

(16) hyer,...,eq_15eq) =h;,(er,... eq_15eq) +hyler, ... eq 15eq| By X N7z)
and factoring onto Z gives
(17) hyei,....eq_15eq) =hy,(er,...,eq_15eq) +hyer, ... eqa1;eq| Ny x Bz).
Coding arguments show that
hy(e,...,eq_1;e4) =0
and

hyei,...,eq_15eq| By x Nz) =0.
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The first equation was noted above; the second follows similarly. Equations (16) and (17)
imply that

(18) h/ly(ela- .. ,ed,l;ed) = hﬂ(el,.. . ,ed,l;ed|JV'y X ﬁz).

We use this ‘maximality property’ of the half-space entropy to deduce a restricted
version of translation invariance. Fix / = 1; let

Uy =10,/ — 117" x {0}
and
Sy =({meA|lm>0}+ U,.
Define measurable partitions 5 = 17, = 55 and ¢ = ¢, = ¥R y . By 7], Prop. 9.3,
H,({|\nv Ny x Bz) = /d_lhﬂ(el, coseq-1seq| Ny X Bz)

with a similar expression for the lexicographic half-space entropy with respect to Haar
measure Ay.

By the adjustments made before the proof, h,(e,...,eqs—1;e4) > 0. Let
Y,={yeY|y,=0forallne S, + Re,},
. (U/JrRe,,)nZd . . .
and let n:Y, — (Z/pZ) be the projection map onto the coordinates
in Us+ Rey. The atom [x],, .5, containing the point x= (x;,x2)e Y xZ is a
subset of Y x {xp} that splits into many atoms [x+ y|,, i, .4, With y € Y, (as before
X+ y = (x1+ y,x2)). Two such atoms for y, y’ € Y, coincide if and only if n(y) = n(y’),
so there are |n(Y,)| such atoms. This gives the upper bound log|n(Y,)| for the lexico-

graphical half-space entropy, which is achieved if and only if the conditional measure
Ky yv.vyxa, Testricted to the partition

{Ix+ ¥levryxm, | v e Y}

is the uniform distribution for u-almost every x € Y x Z. Since this holds for 1y, the same
is true for x by (18). This implies a restricted translation invariance property

(19) w(A+y)=u(d) forAden,and ye Y,.
Let
0, = {neZd|n,~ = —/foralli < d},
andm="/e;+---+/es_1. Then Q, + m = (S, v Uy) 4+ Re,, and so amEY = ny.
Let

T ={ne7% n =0forsomei<d}
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and

Yo={yeY|y,=0forallneT}.

As above o= ™Y, < Y,. Therefore a-invariance of the measure allows us to reformulate (19)
as

(20) w(A+y) =u(d) fordeé? and ye Y.

However, |JQ; = 7%, and so (20) implies that u(A4 + y) = u(A) for y e Y, and every

/
measurable 4 ¢ Y x Z.

To complete the proof of the theorem, we need to show that u is in fact invariant
under translation by all ye Y. Let Y/ = Y be the closure of the group generated by the
orbit of Y, under the action, and let oy, be the restriction of the action to the invariant
subgroup Y’ < Y. The invariance of 1 under o and under translation by Y implies that u
is invariant under translation by Y’. We claim that the subaction (xy/), has positive en-
tropy; this shows that oy, has entropy rank (4 — 1), and Lemma 6.1 shows that Y' =Y.

Suppose Yy is the trivial subgroup. Then the restriction map

0: Y — (Z/(p)"

to the coordinates in 7 is injective (that is, the dual groups R;/(p,f) and
Zu"|ne T)|/(p) are equal). Therefore for m = —e; — - - — ¢4 there exists a polynomial
geZu"|neT)/(p) with

u" —ge(p,f)

We will show that this contradicts the special geometry of f and 7. In the following the
equations are meant modulo p, so suppose u™ — g = hf for some polynomial /. Split / into
asum h="h"+h" with h" € Zu" |ne T|/(p) and h' € Z[u" |n; < 0 for all i < d]. Taking
the product and using f € Z[uy,...,uy| gives hf = h'f + h"f and h"f € Z[u" |ne T]/(p).
Since g € Z[u" |ne T]/(p), we must have h'f eu™ + Zu" |ne T|/(p). Let h,, be the
sum of those coefficients of 4’ whose exponent n of u is minimal with respect to <,,. Let
fmin be the analogous polynomial for f. Then, by the assumption on f, the polynomial
fmin € Z[u;”] cannot be a single monomial. The terms of /’f whose exponents are minimal
are exactly the terms in /1] fmin. Since the latter is contained in the ring

Zu" |n; <0 foralli < d],
it must be equal to #™, which is a contradiction since fp,i, is not a monomial.
By the above, Yy, = Y’ is nontrivial, which implies that
h;, (e, ....eq_1;e4) >0

and so by the entropy formula [7], Prop. 8.3, #; , ((ocY/)A) > 0 as claimed. []
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