J.E. Geach
The clustering of Hα emitters at z = 2.23 from HiZELS
Geach, J.E.; Sobral, D.; Hickox, R.C.; Wake, D.A.; Smail, I.; Best, P.N.; Baugh, C.M.; Stott, J.P.
Authors
D. Sobral
R.C. Hickox
D.A. Wake
Ian Smail ian.smail@durham.ac.uk
Emeritus Professor
P.N. Best
Professor Carlton Baugh c.m.baugh@durham.ac.uk
Professor
J.P. Stott
Abstract
We present a clustering analysis of 370 high-confidence Hα emitters (HAEs) at z = 2.23. The HAEs are detected in the Hi-Z Emission Line Survey (HiZELS), a large-area blank field 2.121 μm narrow-band survey using the United Kingdom Infrared Telescope Wide Field Camera (WFCAM). Averaging the two-point correlation function of HAEs in two ˜1° scale fields [United Kingdom Infrared Deep Sky Survey/Ultra Deep Survey (UDS) and Cosmological Evolution Survey (COSMOS) fields] we find a clustering amplitude equivalent to a correlation length of r0 = 3.7 ± 0.3 h-1 Mpc for galaxies with star formation rates of ≳7 M⊙ yr-1. The data are also well-fitted by the expected correlation function of cold dark matter (CDM), scaled by a bias factor: ωHAE = b2ωDM where b=2.4-0.2+0.1. The corresponding 'characteristic' mass for the haloes hosting HAEs is log (Mh/[h-1 M⊙]) = 11.7 ± 0.1. Comparing to the latest semi-analytic GALFORM predictions for the evolution of HAEs in a ΛCDM cosmology, we find broad agreement with the observations, with GALFORM predicting an HAE correlation length of ˜4 h-1 Mpc. Motivated by this agreement, we exploit the simulations to construct a parametric model of the halo occupation distribution (HOD) of HAEs, and use this to fit the observed clustering. Our best-fitting HOD can adequately reproduce the observed angular clustering of HAEs, yielding an effective halo mass and bias in agreement with that derived from the scaled ωDM fit, but with the relatively small sample size the current data provide a poor constraint on the HOD. However, we argue that this approach provides interesting hints into the nature of the relationship between star-forming galaxies and the matter field, including insights into the efficiency of star formation in massive haloes. Our results support the broad picture that 'typical' (≲L★) star-forming galaxies have been hosted by dark matter haloes with Mh ≲ 1012 h-1 M⊙ since z ≈ 2, but with a broad occupation distribution and clustering that is likely to be a strong function of luminosity.
Citation
Geach, J., Sobral, D., Hickox, R., Wake, D., Smail, I., Best, P., …Stott, J. (2012). The clustering of Hα emitters at z = 2.23 from HiZELS. Monthly Notices of the Royal Astronomical Society, 426(1), 679-689. https://doi.org/10.1111/j.1365-2966.2012.21725.x
Journal Article Type | Article |
---|---|
Publication Date | Oct 1, 2012 |
Deposit Date | Mar 27, 2013 |
Publicly Available Date | Jun 21, 2013 |
Journal | Monthly Notices of the Royal Astronomical Society |
Print ISSN | 0035-8711 |
Electronic ISSN | 1365-2966 |
Publisher | Royal Astronomical Society |
Peer Reviewed | Peer Reviewed |
Volume | 426 |
Issue | 1 |
Pages | 679-689 |
DOI | https://doi.org/10.1111/j.1365-2966.2012.21725.x |
Keywords | Galaxies, Evolution, High-redshift, Star formation. |
Public URL | https://durham-repository.worktribe.com/output/1461724 |
Files
arXiv version
(382 Kb)
PDF
Copyright Statement
arXiv version
You might also like
Towards an accurate model of small-scale redshift-space distortions in modified gravity
(2022)
Journal Article
Fast full N-body simulations of generic modified gravity: derivative coupling models
(2022)
Journal Article
Halo merger tree comparison: impact on galaxy formation models
(2021)
Journal Article
Modelling emission lines in star-forming galaxies
(2021)
Journal Article