Filip Husko filip.husko@durham.ac.uk
PGR Student Doctor of Philosophy
The buildup of galaxies and their spheroids: The contributions of mergers, disc instabilities, and star formation
Huško, Filip; Lacey, Cedric G; Baugh, Carlton M
Authors
Professor Cedric Lacey cedric.lacey@durham.ac.uk
Emeritus Professor
Professor Carlton Baugh c.m.baugh@durham.ac.uk
Professor
Abstract
We use the GALFORM semi-analytical model of galaxy formation and the Planck-Millennium simulation to investigate the origins of stellar mass in galaxies and their spheroids. We compare the importance of mergers and disc instabilities, as well as the starbursts that they trigger. We find that the fraction of galaxy stellar mass formed ex situ (i.e. through mergers; fex) increases sharply from M* = 1011 M⊙ upwards, reaching 80 per cent at M* = 1011.3 M⊙. The massive end of the fex–M* relation does not evolve with redshift, in disagreement with other models. For low-mass galaxies we find larger ex situ contributions at z = 0 than in other models (7–12 per cent), with a decrease towards higher redshifts. Major mergers contribute roughly half of the ex situ mass, with minor mergers and smooth accretion of satellites both accounting for ≈25 per cent, almost independent of stellar mass and redshift. Mergers dominate in building up high-mass (M*, sph > 1011 M⊙) and low-mass (M*, sph < 108.5 M⊙) spheroids. Disc instabilities and their associated starbursts dominate for intermediate-mass spheroids (108.5 < M*, sph < 1011 M⊙) at z = 0. The mass regime where pseudo-bulges dominate is in agreement with observed pseudo-bulge fractions, but the peak value in the pseudo-bulge fraction predicted by GALFORM is likely too high. Starbursts induced by disc instabilities are the dominant channel for spheroid growth at all redshifts, while merger-induced starbursts are relatively negligible, except at very high redshifts (z > 5).
Citation
Huško, F., Lacey, C. G., & Baugh, C. M. (2023). The buildup of galaxies and their spheroids: The contributions of mergers, disc instabilities, and star formation. Monthly Notices of the Royal Astronomical Society, 518(4), 5323-5339. https://doi.org/10.1093/mnras/stac3152
Journal Article Type | Article |
---|---|
Acceptance Date | Oct 27, 2022 |
Online Publication Date | Nov 4, 2022 |
Publication Date | 2023-02 |
Deposit Date | Jan 9, 2023 |
Publicly Available Date | Jan 9, 2023 |
Journal | Monthly Notices of the Royal Astronomical Society |
Print ISSN | 0035-8711 |
Electronic ISSN | 1365-2966 |
Publisher | Royal Astronomical Society |
Peer Reviewed | Peer Reviewed |
Volume | 518 |
Issue | 4 |
Pages | 5323-5339 |
DOI | https://doi.org/10.1093/mnras/stac3152 |
Public URL | https://durham-repository.worktribe.com/output/1185656 |
Files
Published Journal Article
(2 Mb)
PDF
Publisher Licence URL
http://creativecommons.org/licenses/by/4.0/
Copyright Statement
Published by Oxford University Press on behalf of Royal Astronomical Society. This is an Open Access article distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium,
provided the original work is properly cited.
You might also like
Towards an accurate model of small-scale redshift-space distortions in modified gravity
(2022)
Journal Article
Fast full N-body simulations of generic modified gravity: derivative coupling models
(2022)
Journal Article
Halo merger tree comparison: impact on galaxy formation models
(2021)
Journal Article
Modelling emission lines in star-forming galaxies
(2021)
Journal Article
Making use of sub-resolution haloes in N-body simulations
(2021)
Journal Article
Downloadable Citations
About Durham Research Online (DRO)
Administrator e-mail: dro.admin@durham.ac.uk
This application uses the following open-source libraries:
SheetJS Community Edition
Apache License Version 2.0 (http://www.apache.org/licenses/)
PDF.js
Apache License Version 2.0 (http://www.apache.org/licenses/)
Font Awesome
SIL OFL 1.1 (http://scripts.sil.org/OFL)
MIT License (http://opensource.org/licenses/mit-license.html)
CC BY 3.0 ( http://creativecommons.org/licenses/by/3.0/)
Powered by Worktribe © 2025
Advanced Search