E. Audusse
A fast finite volume solver for multi-layered shallow water flows with mass exchange
Audusse, E.; Benkhaldoun, B.; Sari, S.; Seaid, M.; Tassi, P.
Abstract
A fast finite volume solver for hydrostatic multi-layered shallow water flows with mass exchange is investigated. In contrast to many models for multi-layered hydrostatic shallow water flows where the immiscible suppression is assumed, the present model allows for mass exchange between the layers. The multi-layered shallow water equations form a system of conservation laws with source terms for which the computation of the eigenvalues is not trivial. For most practical applications, complex eigenvalues may arise in the system and the multi-layered shallow water equations are not hyperbolic anymore. This property makes the application of conventional finite volume methods difficult or even impossible for those methods that require in their formulation the explicit computation of the eigenvalues. In the current study, we propose a finite volume method that avoids the solution of Riemann problems. At each time step, the method consists of two stages to update the new solution. In the first stage, the multi-layered shallow water equations are rewritten in a non-conservative form and the intermediate solutions are calculated using the method of characteristics. In the second stage, the numerical fluxes are reconstructed from the intermediate solutions in the first stage and used in the conservative form of the multi-layered shallow water equations. The proposed method is simple to implement, satisfies the conservation property and is suitable for multi-layered shallow water equations on non-flat topography. The proposed finite volume solver is verified against several benchmark tests and it shows good agreement with analytical solutions of the incompressible hydrostatic Navier–Stokes equations. The method is conservative by construction and preserves the mass to the machine precision. The performance of the method is also demonstrated by comparing the results obtained using the proposed finite volume method to those obtained using the well-established kinetic method.
Citation
Audusse, E., Benkhaldoun, B., Sari, S., Seaid, M., & Tassi, P. (2014). A fast finite volume solver for multi-layered shallow water flows with mass exchange. Journal of Computational Physics, 272, 23-45. https://doi.org/10.1016/j.jcp.2014.04.026
Journal Article Type | Article |
---|---|
Acceptance Date | Apr 9, 2014 |
Online Publication Date | Apr 16, 2014 |
Publication Date | Sep 1, 2014 |
Deposit Date | Jun 2, 2014 |
Publicly Available Date | Jun 3, 2014 |
Journal | Journal of Computational Physics |
Print ISSN | 0021-9991 |
Electronic ISSN | 1090-2716 |
Publisher | Elsevier |
Peer Reviewed | Peer Reviewed |
Volume | 272 |
Pages | 23-45 |
DOI | https://doi.org/10.1016/j.jcp.2014.04.026 |
Keywords | Multi-layer shallow water equations, Hydrostatic flows, Finite volume method, Method of characteristics, Mass exchange, Wind-driven flows. |
Public URL | https://durham-repository.worktribe.com/output/1460955 |
Files
Accepted Journal Article
(4.4 Mb)
PDF
Copyright Statement
NOTICE: this is the author’s version of a work that was accepted for publication in Journal of Computational Physics. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in Journal of Computational Physics, 272, 2014, 10.1016/j.jcp.2014.04.026.
You might also like
A novel approach for modelling stress fields induced by shallow water flows on movable beds
(2025)
Journal Article
A fractional time-stepping method for unsteady thermal convection in non-Newtonian fluids
(2024)
Journal Article
High-order spline finite element method for solving time-dependent electromagnetic waves
(2024)
Journal Article
Downloadable Citations
About Durham Research Online (DRO)
Administrator e-mail: dro.admin@durham.ac.uk
This application uses the following open-source libraries:
SheetJS Community Edition
Apache License Version 2.0 (http://www.apache.org/licenses/)
PDF.js
Apache License Version 2.0 (http://www.apache.org/licenses/)
Font Awesome
SIL OFL 1.1 (http://scripts.sil.org/OFL)
MIT License (http://opensource.org/licenses/mit-license.html)
CC BY 3.0 ( http://creativecommons.org/licenses/by/3.0/)
Powered by Worktribe © 2025
Advanced Search