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Abstract

A fast finite volume solver for hydrostatic multi-layered shallow water flows with mass ex-
change is investigated. In contrast to many models for multi-layered hydrostatic shallow water
flows where the immiscible suppression is assumed, the present model allows for mass exchange
between the layers. The multi-layered shallow water equations form a system of conservation
laws with source terms for which the computation of the eigenvalues is not trivial. For most
practical applications, complex eigenvalues may arise in the system and the multi-layered shal-
low water equations are not hyperbolic any more. This property makes the application of
conventional finite volume methods difficult or even impossible for those methods which require
in their formulation the explicit computation of the eigenvalues. In the current study, we pro-
pose a finite volume method that avoids the solution of Riemann problems. At each time step,
the method consists of two stages to update the new solution. In the first stage, the multi-
layered shallow water equations are rewritten in a non-conservative form and the intermediate
solutions are calculated using the method of characteristics. In the second stage, the numerical
fluxes are reconstructed from the intermediate solutions in the first stage and used in the con-
servative form of the multi-layered shallow water equations. The proposed method is simple to
implement, satisfies the conservation property and is suitable for multi-layered shallow water
equations on non-flat topography. The proposed finite volume solver is verified against several
benchmark tests and it shows good agreement with analytical solutions of the incompressible
hydrostatic Navier-Stokes equations. The method is conservative by construction and preserves
the mass to the machine precision. The performance of the method is also demonstrated by
comparing the results obtained using the proposed finite volume method to those obtained using
the well-established kinetic method.

Keywords. Multi-layer shallow water equations; hydrostatic flows; finite volume method;
method of characteristics; mass exchange; wind-driven flows

1 Introduction

Mathematical modelling of many types of water flows of stratified geophysical interest is based on
the formulation and solution of the appropriate equations of continuity and motion of water. In
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general, free-surface flows represent a three-dimensional turbulent Newtonian flow in complicated
geometrical domains with moving boundaries. The cost of incorporating three-dimensional data
in natural water courses is often excessively high. Computational efforts needed to simulate three-
dimensional turbulent free-surface flows can also be significant. In view of such considerations,
many researchers have tended to use rational approximations in order to develop two-dimensional
hydrodynamical models for shallow water flows. Indeed, under the influence of gravity, many
free-surface water flows can be modelled by the well-established shallow water equations with
the assumption that the vertical scale is much smaller than any typical horizontal scale. The
shallow water equations can be derived from the non-stationary three-dimensional incompressible
Navier-Stokes equations by averaging over a vertical coordinate using appropriate free-surface and
boundary conditions and taking into consideration hydrostatic pressure distribution. It is expected
that solutions of depth-averaged equations have similar properties as depth-averaged solutions of
initial fluid equations. The shallow water equations in depth-averaged form have been successfully
applied to many engineering problems and their application fields include a wide spectrum of
phenomena other than water waves. For instance, the shallow water equations have applications
in environmental and hydraulic engineering such as tidal flows in an estuary or coastal regions,
rivers, reservoir and open channel flows. Such practical flow problems are not trivial to simulate
since the geometry can be complex and the topography irregular but robust and efficient numerical
techniques have been developed for the past fifteen years. Therefore, during the last decades, a
first class of multi-layer shallow water models has been developed to handle flow problems involving
superposition of immiscible shallow fluids. These fluids can differ in terms of density, compressibility
and viscosity among others, see for instance [1, 10, 12, 31, 11, 16]. The main advantage of these
models is the fact that the multi-layer shallow water model avoids the expensive three-dimensional
Navier-Stokes equations and obtains stratified horizontal flow velocities as the pressure distribution
is nearly hydrostatic. Applying the same idea to a single fluid lead to the development of a second
class of multilayer models, see [7, 3, 6, 14] among others. Both classes of multilayered models have
some links but contain also huge differences since for the second class the introduction of layers
along the vertical direction is no more linked to the nature of the flow but it is a way to obtain a
more accurate description of the flow than the classical shallow water equations. Depending on the
choice of the definition of the layers, this second class of multi-layer models can be related to the
so-called horizontal sigma or isopycnal coordinates that are commonly used for numerical solution
of the hydrostatic Navier-Stokes equations. The main difference with these approaches however,
lies in the use of extensions of robust finite volume schemes for hyperbolic systems developed in the
context of classical shallow water equations. It also be emphasized the fact that, for this second
class of multi-layer models, the classical hypothesis on the shallowness of the flow is replaced by (i)
the hydrostatic nature of the flow and (ii) the shallowness of the layers. Therefore, these models
formally tends to the hydrostatic Navier-Stokes equations when the number of layers goes to infinity.
It should also be pointed out that among the first class of multi-layer models (i.e. between pairs of
nonmiscible materials), some authors recently introduced new models that handle with some mass
exchange, see for example [20, 19]. These models remain different from the models of the second
class that are considered in the current study since the exchange takes place between physically
distinguished materials.

A variety of modelling frameworks and computational schemes have been developed for the
multi-layer shallow water flows. An early attempt to model the two-layer shallow equations was re-
ported in [30] where a set of differential shallow water equations is formulated in a weak-interaction
form. The computational method used in this reference consists of solving the surface and internal
waves in different grids due to the order of magnitude difference in propagation speed between
waves on the free surface and at the density interface. Two-layer shallow water flows have also
been studied for example in [13] ignoring mixing between the layers. It has been shown that,
due to the coupling of momentum between the layers which involves certain derivatives of the
dependent variables, numerical schemes obtained by independent upwindings of each layer of the
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two-layer shallow water model are unconditionally unstable. Introducing a vertical partition of the
water height, a first multilayer shallow water system of isopycnal type was formally derived in [3]
and numerically also solved using a kinetic scheme. A simpler multilayer shallow water system
of sigma-transform type was proposed in [7] accounting only for the total height of water and an
average velocity per each layer as unknowns in the system. It has been shown that the model can
be obtained by using a semi-discretization in the vertical direction of P0 finite element types for
the water velocity. In this case, the definition of the layers in the system does not correspond to
a physical partition of the flow but is related to the quality of the desired approximation over the
water velocity. This later multi-layered model is adopted in the present paper and numerically
solved. Recently, a rigorous derivation of multilayer shallow water equations has been presented in
[14]. The essential difference between this class of models and the multilayer shallow water models
developed in [7, 6] and adopted in the present study lies on the derivation of the viscous terms in
the models. The authors in [14] derived the multilayer model from the hydrostatic Navier-Stokes
equations to obtain a fully justified viscosity tensor whereas, in [7] the multilayer model is derived
from the the conventional Navier-Stokes equations using the shallow water assumption in the sense
that some components of the viscosity tensor are very small and can be neglected. On the other
hand, starting from the hydrostatic Euler equations multilayer model is derived in [6] without con-
sidering the shallow water assumption and ad-hoc vertical and horizontal viscous terms are added
a posteriori. We should point out that the viscous terms considered in the current model can be
viewed as a simplified vertical viscosity used to impose local coupling between the layers while a
fully detailed version of the viscous tensor in multilayer shallow water equations are given in [14].
Needless to mention that the emphasis in the present work is on the hyperbolic part of multilayer
shallow water equations which is the same in all the models developed in [7, 6, 14]. The main
objective of this study is to develop a fast finite volume solver for multi-layered shallow water flows
with mass exchange.

Numerical solution of the multi-layered shallow water equations often presents difficulties be-
cause of their nonlinearity, coupling between the free-surface equation and the equations governing
the water flow, and bed complexity, (compare [7, 3, 29] among others). In addition, the diffi-
culty in these models comes from the coupling terms involving some derivatives of the unknown
physical variables that make the system non-conservative and eventually non-hyperbolic. Due to
these terms, a numerical scheme originally designed for the conventional single-layer shallow water
equations will lead to instabilities when it is applied to each layer separately. For the two-layer
shallow water equations of the first class for nonmiscible fluids, the well-established Roe’s scheme
[25] has applied in [12] among others. Techniques based on central-upwind schemes using the
surface elevation instead of the water depth have also been used in [18] for numerical solution
of the two-layer shallow water equations for nonmiscible fluids. In [10] numerical methods based
on kinetic reconstructions have been studied for these two-layer shallow water equations. In the
framework of kinetic schemes, authors in [1] proposed a class of relaxation methods for solving
two-layer shallow water equations for nonmiscible fluids. For solving multi-layered shallow water
equations of the second type, the authors in [7, 3] developed numerical methods based on kinetic
reconstructions. However, the numerical dissipation is very excessive and for practical applica-
tions, this method may become computationally demanding due to its semi-implicit treatment of
source terms. The well-established lattice Boltzmann method has also been extended to a class of
multi-layered shallow water equations in [29], but the complexity of this method is relevant. For
example, the optimal selection of relaxation rates and the numerical diffusion in this method are
still a problem to overcome. In the present work we propose a new finite volume method of char-
acteristics (FVC) to solve the multi-layered shallow water equations. The method has been first
introduced and analyzed in [8] for the standard single-layer shallow water equations. The proposed
FVC method avoids the solution of Riemann problems and belongs to the predictor-corrector type
methods. The predictor stage uses the method of characteristics to reconstruct the numerical fluxes
whereas the corrector stage recovers the conservation equations. The proposed method is simple,
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non-oscillatory and suitable for multi-layered shallow water equations for which Riemann problems
are difficult to solve. It should be stressed that although the method uses the method of charac-
teristics in its formulation, the overall solver is fully conservative by construction. The method of
characteristics is only used later to compute the interface states at the control volumes to be used
in the computation of numerical fluxes for the conservative finite volume solver. Numerical exam-
ples are presented to verify the considered multi-layered shallow water model. We demonstrate the
method capability of calculating lateral and vertical distributions of velocities for dam-break and
wind-driven circulation flows. Some results are presented as accuracy test examples and others, to
the best of our knowledge, are reported for the first time.

The outline of this paper is as follows. We first give a brief description of the model employed
for multi-layered shallow water flows in section 2. In section 3, we then formulate the finite volume
method of characteristics for the multi-layered shallow water equations. This section includes the
reconstruction of the numerical fluxes and the discretization of source terms. Numerical results are
presented in section 4. Conclusions are summarized in section 5.

2 Multi-layered Shallow Water Equations

The governing equations for multi-layered shallow water flows with mass exchange can be derived
from the three-dimensional hydrostatic incompressible Navier-Stokes equations with free surface by
considering a vertical P0 type discretization of the horizontal velocity. This vertical discretization
defines a series of layers in the flow domain and the equations are vertically integrated on each layer
separately, compare [7, 3, 6, 14] for a detailed discussion on the derivation of these models. It should
be pointed out that the layers defined in the model do not refer to physical interfaces between non-
miscible fluids but to a meshless discretization of the flow domain. Hence, the possibility of water
exchange between the layers is accounted for in the model. The great interest of this strategy is
to preserve an accurate description of the velocity profile but to deal with a two-dimensional fluid
model and thus to avoid the difficult drawback of meshing a three-dimensional moving domain for
which the free-surface may present very sharp profiles such as dam-break problems and hydraulic
jumps. In the current study, we consider the one-dimensional version of the model written in a
conservative form as

∂H

∂t
+

M∑
α=1

∂

∂x
(lαHuα) = 0,

(1)
∂

∂t
(lαHuα) +

∂

∂x

(
lαHu2α +

1

2
glαH

2

)
= −glαH

∂Z

∂x
+ Fα,

where uα(t, x) is the local water velocity for the αth layer, Z(x) the topography of the basin, g
the gravitational acceleration, H(t, x) denotes the water height of the whole flow system and lα
denotes the relative size of the αth layer with

lα > 0,

M∑
α=1

lα = 1.

The water height hα(t, x) of the αth layer is defined as

hα = lαH, α = 1, . . . ,M,

where M is the total number of layers in the flow domain, see Figure 1 for an illustration. In (1),
the source term Fα is the external force acting on the layer α and accounting for the friction and
momentum exchange effects. Thus,
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Figure 1: Schematic of a multi-layered shallow water system.

Fα = Fu + Fb + Fw + Fµ, α = 1, 2, . . . ,M, (2)

where the first term Fu is related to the momentum exchanges between the layers that are defined
through the vertical P0 discretization of the flow. The three last terms Fb, Fw and Fµ are related to
friction effects. Note that the bed friction forcing term Fb is acting only on the lower layer, whereas
the wind-driven forcing term Fw is acting only on the upper layer. The internal friction term Fµ

models the friction between neighboring layers, see [3] for further details. Thus, the advection term
Fu is given by

Fu = uα+1/2Gα+1/2 − uα−1/2Gα−1/2, (3)

where the mass exchange terms Gα+1/2 can be computed as

Gα+1/2 =

α∑
β=1

∂ (hβuβ)

∂x
− lβ

M∑
γ=1

∂ (hγuγ)

∂x

 , α = 1, 2, . . . ,M − 1, (4)

with

G1/2 = GM+1/2 = 0,

and the interface velocity is computed by a simple upwinding following the sign of the mass exchange
term as

uα+1/2 =

 uα, if Gα+1/2 ≥ 0,

uα+1, if Gα+1/2 < 0.
(5)

Note that the mass exchange terms Gα+1/2 can be interpreted as the sum over all layers lower than
the considered layer lα of the difference between the water discharge of each layer and the weighted
total discharge at the same point. The vertical kinematic eddy viscosity term Fµ takes into account
the friction between neighboring layers and it is defined as

Fµ = 2ν (1− δMα)
uα+1 − uα

(lα+1 + lα)H
− 2ν (1− δ1α)

uα − uα−1

(lα + lα−1)H
, (6)
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where ν is the eddy viscosity and δkα represents the Kronecker delta defined as

δkα =

 1, if k = α,

0, if k 6= α.

Notice that a general derivation of the viscous tensor in multilayer shallow water equations can be
found in [14]. The external friction terms are given by

Fb = −δ1α
τb
ρ
, Fw = δMα

τw
ρ
, (7)

with ρ is the water density, τb and τw are respectively, the bed shear stress and the shear of the
blowing wind defined by the water velocity u1 and the wind velocity w as

τb = ρCbu1|u1|, τw = ρCww|w|, (8)

where Cb is the bed friction coefficient, which may be either constant or estimated as

Cb =
gn2

b

H1/3
,

with nb being the Manning roughness coefficient at the bed, w is the wind velocity at 10 m above
the water surface and Cw is the wind friction coefficient defined as [27]

Cw =
σ2ρa
H

,

where σ2 is the wind stress coefficient and ρa is the air density. For simplicity in the presentation
we rewrite the equations (1) in a compact vector form as

∂W

∂t
+

∂F(W)

∂t
= Q(W) +R(W), (9)

where W is the vector of conserved variables, F the vector of flux functions, Q and R are the
vector of source terms

W =



H

Hu1

Hu2

...

HuM


, F(W) =



M∑
α=1

lαHuα

Hu21 +
1

2
gH2

Hu22 +
1

2
gH2

...

Hu2M +
1

2
gH2


, Q(W) =



0

−gH
∂Z

∂x

−gH
∂Z

∂x
...

−gH
∂Z

∂x


,
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R(W) =



0

1

l1

(
u3/2G3/2 −

τb
ρ
+ 2ν

u2 − u1
(l2 + l1)H

)
1

l2

(
u5/2G5/2 − u3/2G3/2 + 2ν

u3 − u2
(l3 + l2)H

− 2ν
u2 − u1

(l2 + l1)H

)
...

1

lM−1

(
uM−1/2GM−1/2 − uM−3/2GM−3/2 + 2ν

uM − uM−1

(lM + lM−1)H
− 2ν

uM−1 − uM−2

(lM−1 + lM−2)H

)
1

lM

(
−uM−1/2GM−1/2 +

τw
ρ

− 2ν
uM − uM−1

(lM + lM−1)H

)



.

Note that the passage from the equations (1) to the system (9) has been achieved by dividing the
second equation in (1) by lα. Notice that the equations (9) has to be solved in a bounded spatial
domain equipped with given boundary and initial conditions. In practice, these conditions are
problem dependent and their discussion is postponed for section 4 where numerical results will be
discussed.

3 Finite Volume Method of Characteristics

It is evident that the calculation of the eigenvalues associated with the multi-layered system (9) is
not trivial and there exist flow situations where these eigenvalues do not remain real. In these cases,
the system is not hyperbolic and yields to the so-called Kelvin-Helmholtz instability at the interface
separating the layers. In the current study, the proposed finite volume method of characteristics
does not require the calculation of the eigenvalues for the multi-layered system and can be applied
for any arbitrary number M of the layers in the system. It is worth remarking that an estimation of
the eigenvalues in the multi-layered model (9) may be used for controlling the timestep size in the
numerical simulation. To this end, we use the eigenvalues associated with the single-layer shallow
water counterparts defined as

λ±
α = uα ±

√
gH, α = 1, 2 . . . ,M. (10)

Note that the approximation (10) can simply be replaced by the maximum wave speed for the
multi-layer shallow water equations. In what follows we describe the different steps of the proposed
finite volume method of characteristics to solve the multi-layered shallow water equations (9).

3.1 Time integration procedure

Let us discretize the spatial domain into control volumes [xi−1/2, xi+1/2] with uniform size ∆x =
xi+1/2 − xi−1/2 and divide the temporal domain into subintervals [tn, tn+1] with stepsize ∆t. Here,
tn = n∆t, xi−1/2 = i∆x and xi = (i+ 1/2)∆x is the center of the control volume. Integrating the
equation (9) with respect to space over the control volume [xi−1/2, xi+1/2] shown in Figure 2, we
obtain the following semi-discrete equations

dWi

dt
+

Fi+1/2 −Fi−1/2

∆x
= Qi +Ri, (11)
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tn+ ∆t

Figure 2: A schematic diagram showing the control volumes and the main quantities used in the
calculation of the departure points. The exact trajectory is represented by a solid line and the
approximate trajectory with a dashed line.

where Wi(t) is the space average of the solution W in the control volume [xi−1/2, xi+1/2] at time
t, i.e.,

Wi(t) =
1

∆x

∫ xi+1/2

xi−1/2

W(t, x) dx,

and Fi±1/2 = F(Wi±1/2) are the numerical fluxes at x = xi±1/2 and time t. In (11), Qi and Ri are
the difference notation for the discretized source terms Q(Wi) and R(Wi) in (9), respectively. To
integrate the system (11) in time we consider an operator splitting method consisting first of the
predictor step

W∗
i = Wn

i +∆tRn
i , (12)

followed by the corrector step

Wn+1
i = W∗

i −∆t
F∗
i+1/2 −F∗

i−1/2

∆x
+∆tQ∗

i . (13)

It should be pointed out that as with all explicit time stepping methods the theoretical maximum
stable time step ∆t is specified according to the Courant-Friedrichs-Lewy (CFL) condition

∆t = Cr
∆x

max
α=1,...,M

(
|λn

α|
) , (14)

where Cr is the Courant number to be chosen less than unity. Note that we have used the eigen-
values of the single-layer model (10) to control the time step in (14). However, one could use a
fixed time step or a rough estimation of the eigenvalues for the multi-layer model. In practice, if
the explicit expression of the eigenvalues is available, the stability condition (14) could be changed
to include these eigenvalues. It should also be stressed that for stability reasons an upper bound of
the eigenvalues should appear in (14) and not an estimation of the eigenvalues of the single-layer
model. However, all the numerical results presented in the present work suggest that the CFL
condition (14) ensures the stability of the proposed method.

The spatial discretization of the equation (13) is complete when a numerical construction of
the numerical fluxes F∗

i±1/2 and source terms Q∗
i are chosen. In general, the construction of the
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numerical fluxes requires a solution of Riemann problems at the interfaces xi±1/2, see for example
[2, 25]. From a computational viewpoint, this procedure is very demanding and may restrict the
application of the method for which Riemann solutions are not available. Our objective in the
present work is to present a class of finite volume method of characteristics (FVC) that is simple,
easy to implement, and accurately solves the equations (9) without relying on Riemann problem
solvers or complicated techniques for well-balancing the discretizations of the gradient fluxes and the
source terms. This objective is reached by reformulating the multi-layered system in an advective
form and integrating the obtained system along the characteristics defined by the advection velocity.

3.2 Discretization of the flux gradients

To reconstruct the numerical fluxes Fn
i±1/2 in (13), we consider the method of characteristics applied

to an advective version of the system (1). In practice, the advective form of the multi-layered
shallow water equations (9) is built such that the non-conservative variables are transported with
a velocity field associated with each layer. Here, the multi-layered shallow water equations (9),
without accounting for the source term R(W), are reformulated in an advective form as

∂H

∂t
+

(
M∑
α=1

lαuα

)
∂H

∂x
= −

M∑
α=1

lαH
∂uα
∂x

,

(15)
∂qα
∂t

+ uα
∂qα
∂x

= −qα
∂uα
∂x

− gH
∂

∂x
(H + Z) ,

which can be rearranged in a compact form as

∂Uα

∂t
+ Uα

∂Uα

∂x
= Sα (U) , α = 0, 1, . . . ,M, (16)

where qα = Huα is the water discharge, U = (U0, U1, . . . , UM )T , S (U) = (S0, S1, . . . , SM )T with

U =



H

q1

q2

...

qM


, S(U) =



−
M∑
α=1

lαH
∂uα
∂x

−Hu1
∂u1
∂x

− gH
∂

∂x
(H + Z)

−Hu2
∂u2
∂x

− gH
∂

∂x
(H + Z)

...

−HuM
∂uM
∂x

− gH
∂

∂x
(H + Z)


,

and the advection velocity Uα is defined as

Uα =


M∑
β=1

lβuβ , if α = 0,

uα, if α = 1, 2, . . . ,M.

(17)

Note that the case with α = 0 does not refer to any layer in the system but to the global mass
equation. It is only used here to formulate the compact advective form (16) for the whole system.
The fundamental idea of the method of characteristics is to impose a regular grid at the new
time level and to backtrack the flow trajectories to the previous time level. At the old time level,
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the quantities that are needed are evaluated by interpolation from their known values on a regular
grid. For more discussions we refer the reader to [24, 28, 26] among others. Thus, the characteristic
curves associated with the equation (16) are solutions of the initial-value problems

dXα,i+1/2(τ)

dτ
= Uα,i+1/2

(
τ,Xα,i+1/2(τ)

)
, τ ∈ [tn, tn +∆t/2] ,

(18)
Xα,i+1/2(tn +∆t/2) = xi+1/2, α = 0, 1, . . . ,M.

Note thatXα,i+1/2(τ) are the departure points at time τ of a particle that will arrive at the gridpoint
xi+1/2 in time tn+∆t/2. The method of characteristics does not follow the flow particles forward in
time, as the Lagrangian schemes do, instead it traces backward the position at time tn of particles
that will reach the points of a fixed mesh at time tn+∆t/2. By doing so, the method avoids the grid
distortion difficulties that the conventional Lagrangian schemes have, see for instance [24, 28, 23]
and further references are therein. The solutions of (18) can be expressed as

Xα,i+1/2(tn) = xi+1/2 −
∫ tn+∆t/2

tn

Uα,i+1/2

(
Xα,i+1/2(τ)

)
dτ,

(19)
= xi+1/2 − δα,i+1/2.

To approximate the integral in (19), we used a method first proposed in the context of semi-
Lagrangian schemes to integrate the weather prediction equations in [28]. Note that δα,i+1/2 denotes
the displacement between a mesh point on the new level, xi+1/2, and the departure point of the
trajectory to this point on the previous time level Xα,i+1/2(tn), i.e.

δα,i+1/2 = xi+1/2 −Xα,i+1/2(tn).

Applying the mid-point rule to approximate the integral in (19) yields

δα,i+1/2 =
∆t

2
Uα,i+1/2

(
tn+1/2, Xα,i+1/2(tn+1/2)

)
. (20)

Using the second-order extrapolation

Uα,i+1/2(tn+1/2, xi+1/2) =
3

2
Uα,i+1/2(tn, xi+1/2)−

1

2
Uα,i+1/2(tn−1, xi+1/2), (21)

and the second-order approximation

Xα,i+1/2(tn+1/2) = xi+1/2 −
1

2
δα,i+1/2,

we obtain the following implicit formula for δα,i+1/2

δα,i+1/2 =
∆t

2

[
3

2
Uα,i+1/2

(
tn, xi+1/2 −

1

2
δα,i+1/2

)
− 1

2
Uα,i+1/2

(
tn−1, xi+1/2 −

1

2
δα,i+1/2

)]
.

To compute δα,i+1/2 we consider the following successive iteration procedure

δ
(0)
α,i+1/2 =

∆t

2

[
3

2
Uα,i+1/2

(
tn, xi+1/2

)
− 1

2
Uα,i+1/2

(
tn−1, xi+1/2

)]
,

δ
(k)
α,i+1/2 =

∆t

2

[
3

2
Uα,i+1/2

(
tn, xi+1/2

1

2
δ
(k−1)
α,i+1/2

)]
(22)

−∆t

2

[
1

2
Uα,i+1/2

(
tn−1, xi+1/2 −

1

2
δ
(k−1)
α,i+1/2

)]
, k = 1, 2, . . . .
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The iterations (22) are terminated when the following criteria∥∥∥δ(k)α − δ
(k−1)
α

∥∥∥∥∥∥δ(k−1)
α

∥∥∥ ≤ ε, (23)

is fulfilled for the L∞-norm ‖ · ‖ and a given tolerance ε. It is also known [23] that∥∥∥δα − δ(k)α

∥∥∥ ≤ ∆t

4

∥∥∥δα − δ(k−1)
α

∥∥∥ max
α=0,1,...,M

∣∣∣∣∂Uα

∂x

∣∣∣∣ , k = 1, 2, . . . . (24)

Hence, a sufficient condition for the convergence of iterations (22) is that the velocity gradient
satisfies

max
α=0,1,...,M

∣∣∣∣∂Uα

∂x

∣∣∣∣ ∆t

4
≤ 1. (25)

Note that the condition (25) is sufficient to guarantee that the characteristic curves do not intersect
during a time step of size ∆t/2. Furthermore, if

∣∣∂Uα
∂x

∣∣∆t is sufficiently small, we can conclude that
a few iterations (1 or 2) are enough to approximate the characteristic curves up to O

(
(∆t)3

)
, see

[28, 23, 26] among others. In all numerical results presented in this study, the number of iterations
in (22) to reach a tolerance of ε = 10−6 does not exceed 1 iteration. This is mainly due to the
small hyperbolic Courant number used in the simulations. For the considered test examples in
section 4, we have found that it suffices that the hyperbolic CFL condition (14) is satisfied to
ensure convergence in the iterations (22). A schematic representation of the quantities involved in
computing the departure points is shown in Figure 2.

Once the characteristics curves Xα,i+1/2(tn) are known, a solution at the cell interface xi+1/2 is
reconstructed as

U
n+1/2
α,i+1/2 = Uα

(
tn +∆t/2, xi+1/2

)
= Ũα

(
tn, Xα,i+1/2(tn)

)
, (26)

where Ũα

(
tn, Xα,i+1/2(tn)

)
is the solution at the characteristic foot computed by interpolation

from the gridpoints of the control volume where the departure point resides i.e.

Ũα

(
tn, Xα,i+1/2(tn)

)
= P

(
Uα

(
tn, Xα,i+1/2(tn)

))
, (27)

where P represents an interpolating polynomial. For instance, a Lagrange-based interpolation
polynomials can be formulated as

P
(
Uj

(
tn, Xα,i+1/2(tn)

))
=
∑
k

Lk(Xα,i+1/2)U
n
α,k, (28)

with Lk are the Lagrange basis polynomials given by

Lk(x) =
∏
k′=0
k′ 6=k

x− xk′

xk − xk′
.

Note that other interpolation procedures such as Spline or Hermite interpolation methods or in-
terpolation techniques based on radial basis functions can also be applied in (27). It is worth
mentioning that the proposed finite volume method is fully conservative by construction and the
non-conservative system (15) is used only to compute the intermediate states for the numerical
fluxes in (11).
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3.3 Discretization of the source terms

Applied to the equations (16), the characteristic solutions are given by

H
n+1/2
i+1/2 = H̃

n+1/2
i+1/2 − ∆t

2∆x
H̃

n+1/2
i+1/2

M∑
α=1

lα

(
u
n+1/2
α,i+1 − u

n+1/2
α,i

)
,

q
n+1/2
α,i+1/2 = q̃

n+1/2
α,i+1/2 −

∆t

2∆x

(
q̃
n+1/2
α,i+1/2

(
u
n+1/2
α,i+1 − u

n+1/2
α,i

)
+ (29)

gH̃
n+1/2
i+1/2

(
(H

n+1/2
i+1 + Zn

i+1)− (H
n+1/2
i + Zn

i )
))

,

where

H̃
n+1/2
i+1/2 = H

(
tn, X0,i+1/2(tn)

)
, q̃

n+1/2
α,i+1/2 = qα

(
tn, Xα,i+1/2(tn)

)
,

are the solutions at the characteristic foot computed by interpolation from the gridpoints of the
control volume where the departure points Xα,i+1/2(tn) belong. The numerical fluxes Fi±1/2 in (11)

are calculated using the intermediate states W
n+1/2
i±1/2 recovered accordingly from the characteristic

solutions U
n+1/2
j,i±1/2 in (26). Hence, the corrector stage (13) in the FVC method reduces to

Hn+1
i = H

n+1/2
i − ∆t

∆x

M∑
α=1

(
(lαHuα)

n+1/2
i+1/2 − (lαHuα)

n+1/2
i−1/2

)
,

qn+1
α,i = q

n+1/2
α,i − ∆t

∆x

((
Hu2α +

1

2
gH2

)n+1/2

i+1/2

−
(
Hu2α +

1

2
gH2

)n+1/2

i−1/2

)
− (30)

∆t

∆x
gĤ

n+1/2
i

(
Zn
i+1 − Zn

i−1

)
,

In our FVC method, the reconstruction of the term Ĥ
n+1/2
i in (30) is carried out such that the

discretization of the source terms is well balanced with the discretization of flux gradients using
the concept of C-property [9]. Here, a numerical scheme is said to satisfy the C-property for the
equations (9) if the condition

Z +Hn = C, unα = 0, α = 1, . . . ,M, (31)

holds for stationary flows at rest. In (31), C is a positive constant. Therefore, the treatment of
source terms in (30) is reconstructed such that the condition (31) is preserved at the discrete level.

Let us assume a stationary flow at rest, uα = 0, α = 1, 2, . . . ,M, and a linear interpolation
procedure is used in the FVC method. Thus, the system (9) reduces to

∂

∂t

 H

0

+
∂

∂x

 0

1

2
gH2

 =

 0

−gH
∂Z

∂x

 . (32)

Applied to the system (32), the stage (29) computes

H
n+1/2
i+1/2 =

H
n+1/2
i +H

n+1/2
i+1

2
,

(33)
unα,i+1/2 = 0, α = 1, . . . ,M,
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while the stage (30) updates the solution as

Hn+1
i = H

n+1/2
i ,

(34)

qn+1
α,i = q

n+1/2
α,i − 1

2

∆t

∆x
g

((
H

n+1/2
i+1/2

)2
−
(
H

n+1/2
i−1/2

)2)
−∆tg

(
H

∂Z

∂x

)n+1/2

i

,

To obtain stationary solutions Hn+1
i = Hn

i , the sum of discretized flux gradient and source term
in (34) should be equal to zero i.e.,

1

2∆x

((
H

n+1/2
i+1/2

)2
−
(
H

n+1/2
i−1/2

)2)
= −

(
H

∂Z

∂x

)n+1/2

i

, (35)

Using H
n+1/2
i+1/2 =

H
n+1/2
i +H

n+1/2
i+1

2
, the condition (35) is equivalent to

1

8∆x

(
H

n+1/2
i+1 + 2Hn

i +H
n+1/2
i−1

)(
H

n+1/2
i+1 −H

n+1/2
i−1

)
= −

(
H

∂Z

∂x

)n+1/2

i

, (36)

Since for stationary solutions H
n+1/2
i+1 −H

n+1/2
i−1 = Zi+1 − Zi−1, the equations (36) become(

H
∂Z

∂x

)n+1/2

i

=
H

n+1/2
i+1/2 +H

n+1/2
i−1/2

2

Zi+1 − Zi−1

2∆x
, (37)

Hence, if the source term Ĥ
n+1/2
i in the predictor stage (30) is discretized as

Ĥ
n+1/2
i =

1

4

(
H

n+1/2
i+1 + 2H

n+1/2
i +H

n+1/2
i−1

)
, (38)

then the proposed FVC method satisfies the C-property. A detailed analysis of convergence and
stability has been presented in [8] for nonlinear scalar problems. Notice that this property is
achieved by assuming a linear interpolation procedure in the predictor stage of the FVC method.
However, a well-balanced discretization of flux gradients and source terms for a quadratic or cubic
interpolation procedures can be carried out using similar techniques.

In summary, the implementation of FVC algorithm to solve the multi-layered shallow water

equations (9) is carried out in the following steps. Given the solution
(
Hn

i , q
n
α,i

)
at time tn, we

compute the solution
(
Hn+1

i , qn+1
α,i

)
at the next time level tn+1 via:

Step 1. Perform the first step of the time splitting in (12) to compute the solutions H∗
i and q∗α,i,

α = 1, 2, . . . ,M .

Step 2. Compute the departure points Xα,i+1/2(tn), with α = 0, 1, . . . ,M using for example the
iterative procedure (22).

Step 3. Compute the approximations

H̃n
i+1/2 = H

(
tn, X0,i+1/2(tn)

)
and q̃nα,i+1/2 = qα

(
tn, Xα,i+1/2(tn)

)
, α = 1, . . . ,M

employing an interpolation procedure.

Step 4. Evaluate the intermediate states H
n+1/2
i+1/2 and q

n+1/2
α,i+1/2, α = 1, . . . ,M from the predictor

stage (29).

Step 5. Update the solutions Hn+1
i and qn+1

α,i , α = 1, . . . ,M using the corrector stage (30).

Note that several interpolation procedures can be applied in step 3. In the current study we
have used a linear interpolation since for this type of interpolations the obtained solution remains
monotone and the FVC method preserves the exact C-property at the machine precision, compare
for example [8].
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4 Numerical Results and Examples

We present numerical results for several test problems in shallow water flows to check the accuracy
and the performance of the proposed multi-layered finite volume model. We first examine the
conservation property of the FVC scheme and then we compare the obtained results for a dam-
break problem to those obtained using the three-dimensional Navier-Stokes equations. We also
solve a class of wind-driven circulation problems in closed water channels and the obtained velocity
profiles are compared to those analytically calculated [27]. The FVC results are also compared to
numerical results obtained using the kinetic scheme developed in [7] to solve the multi-layer shallow
water equations. Details on the implementation of this kinetic scheme can found in [22, 5] and are
omitted here.

In this section we also compare the numerical results obtained using the proposed multi-layered
finite volume method to those obtained using a three-dimensional model for free-surface flows. The
considered 3D numerical code belongs to the open source TELEMAC-3D1, which solves the 3D
Navier-Stokes equations using a finite element discretization under hydrostatic or non-hydrostatic
approximations, compare [17] for more details. The hydrostatic approximation consists on ne-
glecting the vertical acceleration, diffusion and source terms in the momentum equations. The
non-hydrostatic approximation is based on the pressure decomposition into hydrostatic and hydro-
dynamic parts, allowing an accurate computation of the vertical velocity, which is now coupled with
the whole system of equations. The overall algorithm for the solution of the hydrostatic 3D model
is given hereafter: (i) computation of the advected velocity components by solving the advection
terms in the momentum equations; (ii) determination of the new velocity components by taking
into account the diffusion and source terms in the momentum equations (intermediate velocity
field); (iii) computation of the water depth from vertical integration of the continuity equation
and momentum equations by excluding the pressure terms; and (iv) determination of the vertical
velocity from the continuity equation and computation of the pressure step by the well-established
projection method. The overall algorithm for the solution of the 3D non-hydrostatic model can be
summarized as: (i) a hydrostatic part, which is almost exactly to the hydrostatic model described
above, with the exception that the vertical velocity is also advected and diffused. In this step the
free surface function is also determined; and (ii) a non-hydrostatic part, in which the velocity field
is corrected by the dynamic pressure gradients in order to fulfill the divergence-free constraint.
The computations presented in the current study were performed using the non-hydrostatic ap-
proximation. For the mesh generation, the 3D finite element mesh is obtained by first dividing the
two-dimensional domain with non-overlapping linear triangles and then by extruding each triangle
along the vertical direction into linear prismatic columns that exactly fit the bottom and the free-
surface. In doing so, each column can be partitioned into non-overlapping layers, requiring that two
adjacent layers comprise the same number of prisms. Turbulent stresses and turbulent fluxes are
modeled using turbulent viscosity and turbulent gradient diffusion hypothesis, which respectively
introduce eddy viscosity and eddy diffusivity. Several turbulence-closure models are available in
TELEMAC-3D, see [17] among others. In this study, a constant eddy viscosity model was used.

In all our simulations using the proposed multi-layered finite volume model, the total water
height H is assumed to be given and the water heights hα at the layers are defined using equal
fractions as

hα = lαH with lα =
1

M
, α = 1, . . . ,M.

Furthermore, the fixed Courant number Cr = 0.7 is used and the time step ∆t is varied according
to the condition (14). The following test examples are selected:

1Information on the software is available on http://www.opentelemac.org
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Figure 3: The water interfaces (dashed lines) and water free-surface (solid line) for the lake at rest
flow at time t = 10800 s using different layers in the multi-layer model.

4.1 Lake at rest flow

In this example we solve the benchmark problem of a lake at rest flow proposed in [9] to test
the conservation property of numerical methods for single-layer shallow water equations. The lake
bed is irregular, so this test example is a good illustration of the significance of the source term
treatment for practical applications to natural watercourses. In the current work we consider its
multi-layer version. It is expected that the total water free-surface remains constant and the water
velocity should be zero at all times. We run the FVC method using a mesh of 100 gridpoints
and the obtained results are displayed at time t = 10800 s as in [9]. In Figure 3 we present the
water interfaces and the water free-surface along with the lake bed. We show the computed results
using the single-layer, 5-layer, 10-layer and 20-layer models. For better insight, Figure 4 presents
the errors in the difference between the exact and the computed total water free- surface. As can
be seen, the water free-surface remains constant during the simulation times and the proposed
FVC method preserves the C-property to the machine precision. It should be stressed that the
performance of the FVC method is very attractive since the computed solution remains stable and
accurate even when coarse meshes are used without requiring complicated techniques to balance
the source terms and flux gradients as those reported in [9, 4] among others.
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Figure 4: Errors in the difference between the exact and the computed total water free-surface for
the lake at rest flow at time t = 10800 s.

4.2 Dam-break problem on a flat bottom

We consider the dam-break problem in a rectangular channel with flat bottom, i.e. Z(x) = 0
studied in [3]. The channel is of length 100 and the initial conditions are given by

H(0, x) =


2, if x ≤ 0,

1, if x > 0,

u(0, x) = 0.

At t = 0 the dam collapses and the flow problem consists of a shock wave traveling downstream
and a rarefaction wave traveling upstream. The purpose of this test example is to compare the
results obtained using our FVC scheme to those computed using the kinetic scheme in [7]. We also
use this test example to validate the FVC results to those obtained using the three-dimensional
Navier-Stokes equations with free-surface conditions reported in [15]. Following the work in [7], the
dimensionless viscosity coefficient ν = 0.01, the gravity g = 2, the friction coefficient κ = 0.1 and
the results are presented at time t = 14. In Figure 5 we display the water free-surface obtained
using the FVC and kinetic schemes on two different meshes with 50 and 200 gridpoints for the
10-layer model. In this figure we also include a reference solution obtained using the FVC scheme
on a fine mesh of 8000 gridpoints. It is clear that at the coarse mesh of 50 gridpoints the solution
computed by the kinetic scheme is more diffusive than the FVC solution. This numerical diffusion
is substantially reduced by refining the mesh to 200 gridpoints but still the FVC scheme illustrates
better results. Similar features have been observed for a comparison, not reported here, using
20-layer and 50-layer models. The FVC scheme captures correctly the rarefaction and the shock
without need for very fine mesh.

The water velocity at the interfaces along with the mean velocity are depicted in Figure 6 using
both selected meshes. It is clear from the velocity plots in this figure that a numerical dissipation
is more pronounced in the results obtained using the kinetic schemes than those velocity plots
computed using the FVC scheme. Note that the performance of our FVC method is very attractive
since the computed solutions remain stable and highly accurate without solving Riemann problems
or linear systems of algebraic equations in the hyperbolic parts. The associated 3D simulations for
this test example using the TELEMAC-3D are depicted in Figure 7. Here a mesh of 9840 elements
and 5907 nodes is used in the simulation along with a fixed time step ∆t = 0.01 s. Qualitatively, the
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Figure 5: Water free-surface obtained for the 10-layer model using 50 gridpoints (left) and 200
gridpoints (right) for the dam-break on a flat bottom at t = 14.

Table 1: CPU times (in seconds) for 10-layer and 20-layer models on different meshes for the
dam-break on a flat bottom at t = 14.

10-layer model 20-layer model

Gridpoints Kinetic scheme FVC scheme Kinetic scheme FVC scheme

200 3.2 3.0 5.4 4.8

400 12.5 9.7 20.8 15.5

800 49.1 34.9 81.9 55.4

speed and the location of the moving water front in the 3D results agree well to those simulated by
the multi-layered model. It is clear that the 3D results exhibit some fluctuations on the water free-
surface which are absent in the results obtained using the multi-layered model. These fluctuations
are attributed to the turbulent effects accounted for in the 3D model and are in good agreement
with the experimental data report in [21] for dam-break flows.

To further quantify the results for this test example we compare in Figure 8 the velocity profiles
at the location x = 8 obtained using the multi-layered shallow water equations to those obtained
using TELEMAC-3D and the three-dimensional Navier-Stokes equations at time t = 14. We have
included results obtained for the 5-layer, 10-layer, 20-layer and 50-layer models using the mesh with
200 gridpoints. Increasing the number of layers in our model results in a better convergence to the
velocity profile obtained using the Navier-Stokes equations. Again, compared to the results obtained
using the Navier-Stokes equations, the velocity profiles computed using the FVC scheme are more
accurate than the results computed using the kinetic scheme. Obviously for a given location in
the computational domain the water velocity vertically varies within the elevation which is not the
case in the conventional single-layer shallow water equations widely used in the literature to model
dam-break problems. This test example demonstrates that it is possible to capture the vertical
variation in the water velocity using a series of one-dimensional shallow water equations without
relying on the three-dimensional Navier-Stokes equations with moving boundary conditions. This
results in a significant reduction of computational costs. For the considered dam-break conditions,
the FVC scheme produces numerical results as accurate as those computed using the Navier-Stokes
equations but with a very low computational cost. Needless to mention the discrepancy between
the velocity profiles obtained using the TELEMAC-3D and the FVC methods in Figure 8. This
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Figure 6: Water velocity at the interfaces (dashed lines) and the mean velocity (solid line) obtained
for the 10-layer model using the kinetic scheme (left) and the FVC scheme (right) for the dam-break
on a flat bottom at t = 14.

discrepancy is mainly due to the turbulent effects present in the model for dam-break problems.

In order to highlight the performance of the FVC scheme for this test example we summarize in
Table 1 the CPU times for the FVC and the kinetic schemes using meshes with different number of
gridpoints. A simple inspection of this table reveals that, for meshes with low number of gridpoints,
the measured CPU times are comparable for both schemes. However, for meshes with large number
of gridpoints the FVC method is the most efficient. Note that in general, kinetic schemes are based
on the set of equations governing the motion of water flows at the continuum level, i.e. shallow
water equations, can be obtained by taking the moments of the well-known Boltzmann equation
at the molecular level with respect to the collision invariants. For water in the state of collisional
equilibrium, the collision integral vanishes, and the Boltzmann equation adopts a form similar
to that of the linear wave equation. Its solution is simply the Maxwellian probability density
distribution function. When moments of this equation are taken with the collision invariants, the
shallow water equations are obtained, see for instance [22, 7]. For the present test problem, it has
been shown that the FVC scheme might be a better compromise between accuracy, stability and
efficiency. It should be stressed that the CPU time for the TELEMAC-3D in this test example is
about 320 s.
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Figure 7: Initial water free-surface (left) and water free-surface at time t = 14 s (right) obtained
for the 3D simulation of dam-break problem.
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Figure 8: Velocity profiles at the location x = 8 obtained using the kinetic scheme (left) and FVC
scheme (right) for the dam-break on a flat bottom at t = 14.
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Figure 9: Velocity fields obtained for 10-layer model (first row), 20-layer model (second row) and
50-layer model (third row) using the kinetic scheme (left column) and FVC (right column) scheme
on a mesh of 16 gridpoints at time t = 20 s.
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Figure 10: Reference velocity fields obtained for 10-layer model using the kinetic scheme on a fine
mesh of 16000 gridpoints at time t = 20 s.

4.3 Wind-driven circulation flow

Our final test example is a class of wind-driven circulation flows proposed in [27]. This type of
test examples has widely served as a prototype to verify the performance of multi-layer shallow
water flows, see for example [7, 29]. In our simulations we use the same flow parameters as in
[7]. Hence, the multi-layered equations (9) are solved in a flow domain 16 m long filled at 2 m
water under a wind force blowing from the right side of the domain with a speed of w = 20 m/s.
The viscosity coefficient ν = 0.1 m2/s, the friction coefficient κ = 0.00001 m/s, the wind stress
coefficient γ2s = 0.0015, the water density ρ = 1000 kg/m3, the air density ρa = 1.2 kg/m3 and the
gravity g = 9.81 m/s2. In Figure 9 we present the velocity fields obtained for 10-layer, 20-layer and
50-layer models using the kinetic and FVC schemes on a mesh of 16 gridpoints at time t = 20 s. It is
worth remarking that these two-dimensional velocity fields are generated from our one-dimensional
results using a post-processing procedure from [7]. Here, the vertical velocity v is recovered from
the divergence-free condition

∂u

∂x
+

∂v

∂z
= 0. (39)

A similar procedure has also been used in [14]. Thus, to obtain the velocity v the equation (39)
is integrated on each layer using a non-penetration condition at the bottom. As can be seen from
the results in Figure 9 a global recirculation has been formed in the channel center and the center
of the vortex is clearly affected by the number of layers used in the simulations. It is also clear
that the numerical diffusion is more visible in the kinetic results than the FVC results such that
for this test example the kinetic scheme fails to accurately resolve the wall effects on the velocity
fields. To further emphasize this point we present in Figure 10 a reference velocity field obtained
for the 10-layer model using the kinetic scheme on a very fine mesh of 16000 gridpoints. The clear
indication from the velocity fields depicted in this figure is that the kinetic scheme requires a very
fine mesh to capture the wall effects and produces a high resolution velocity field. On the other
hand, we remark that the computed results in Figure 10 are in good agreement with those simulated
using the FVC scheme on the coarse mesh of 16 gridpoints. The obtained results demonstrate the
ability of the presented FVC scheme to capture the small flow features within the channel without
generating spurious oscillations. For instance, a simple inspection of these results demonstrates that
the wall pattern is accurately captured along its transport direction and no noticeable differences
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Figure 11: Initial mesh (left) and velocity field at time t = 20s (right) obtained for the 3D simulation
the wind-driven circulation flow.
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Figure 13: Comparisons of numerical predictions with the analytical solution for the wind-driven
circulation flow without bottom friction using 17 gridpoints (top) and 170 gridpoints (bottom).

are detected between the results obtained using the simulations performed on the coarse mesh of
16 gridpoints and those using the kinetic scheme on the fine mesh of 16000 gridpoints.

Now, we turn our attention to the performance of the FVC scheme for a test example on
wind-driven circulation in a long water channel proposed in [27]. The aim of this test problem is
to compare the computed velocity profiles using the FVC scheme to those analytically calculated
in [27]. Here, we solve the system (9) in a flat rectangular lake of 3400 × 1400 × 10 m subject
to a uniform wind stress of σ = 1.5 N/m2 applied at the surface, equivalent to a wind speed of
w = 28.83 m/s blowing from the left of the lake. As in [27], the viscosity coefficient ν = 100 cm2/s,
the friction coefficient κ = 0.1 cm/s, the wind stress coefficient γ2s = 0.0015, the water density
ρ = 1025 kg/m3, the air density ρa = 1.2 kg/m3 and the gravity g = 9.81 m/s2. It has been shown
in [27] that at a given elevation z ∈ [−10, 0] an analytical solution of the velocity can be derived as

u(z) = β

(
z2

2ν
− H

κ
− H2

2ν

)
+

σ

ρ

(
z

ν
+

1

κ
+

H

ν

)
, (40)
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Figure 14: Comparisons of numerical predictions with the analytical solution for the wind-driven
circulation flow with no slip condition using 17 gridpoints (top) and 170 gridpoints (bottom).

where

β =

σ

ρ

(
H2

2ν
+

H

κ

)
(
H3

3ν
+

H2

κ

) .

In the first run for this test example we consider the situation of wind-driven circulation flow
without bottom friction. For the second run we solve the wind-driven circulation flow with no slip
condition. In this case the analytical solution (40) reduces to

u(z) =
σ

ρνH

(
3

4
z2 +Hz +

1

4
H2

)
.

It is easy to verify that this velocity profile presents a parabola with two zeros attained at z = −H

and z = −H

3
. The minimum and maximum vertical velocities are

−1

12

σH

ρν
and

1

4

σH

ρν
, respectively.

The TELEMAC-3D model is also used to solve this test example on a mesh of 25600 elements and
15015 nodes shown in the left plot of Figure 11 using a fixed time step ∆t = 1 s. The obtained
velocity field at time t = 20 s is presented in the right plot of Figure 11. Figure 12 illustrates a
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Figure 15: Velocity fields obtained using first-order kinetic, second-order kinetic and FVC methods
for 10-layer model (left plot) and 20-layer model (right plot) using a mesh of 17 gridpoints.

cross section of the velocity field in the xz plane. This velocity field shows similar flow features as
those detected in the results obtained using the FVC scheme presented in Figure 9.

Figure 13 exhibits the velocity profile at the center of the lake, x = 1700 m for the wind-driven
circulation flow without bottom friction using two meshes of 17 and 170 gridpoints. Those results
obtained for the wind-driven circulation flow with no slip condition are presented in Figure 14. For
comparison reasons we have also included in these figures the results obtained using the kinetic
scheme. For comparison reason, the velocity profiles for the TELEMAC-3D are also included
in Figure 14. Under actual wind and flow conditions, it is clear that the FVC scheme on both
meshes produces the best results compared to the exact solution. It should be stressed that this
matching between the analytical and the FVC results is valid only at the center of the lake when
the length of the lake is assumed infinitely long. Results on the coarse mesh of 17 gridpoints using
the kinetic scheme are more dissipative than those obtained using the FVC scheme on the same
mesh. It is worth remarking that the velocity profiles obtained for this wind-driven circulation
flow on the coarse mesh using the kinetic scheme exhibit a damped behavior near the bed region.
This can be explained by the excessive numerical diffusive effect of the kinetic scheme. Overall, the
proposed multi-layered finite volume solutions compare well to the analytical solutions. The good
agreement between the FVC and the TELEMAC-3D results in Figure 14 should also be noted.
In order to examine the performance of our FVC method over second-order kinetic methods, we
have implemented slope limiters in the kinetic solver. The second-order accuracy is achieved in
the kinetic scheme by using the MUSCL techniques for the spatial discretization along with the
second-order Runge-Kutta method for the time integration. As a slope limiter function we used the
well-known van Albada limiter. In Figure 15 we present the obtained results using the first-order,
second-order kinetic schemes and the FVC method for 10-layer and 20-layer models using a mesh
of 17 gridpoints. The improvement in accuracy of the second-order kinetic scheme over the its
first-order counterpart can clearly be seen from the results in Figure 15. However, for both models
with 10 and 20 layers the results obtained using the FVC method are more accurate than those
obtained using the second-order kinetic scheme. Compare the numerical diffusion in the results
obtained for the lower layers using the second-order kinetic scheme to those obtained using the
FVC method in Figure 15. In terms of efficiency, for all considered number of layers the FVC
method is the most efficient. For instance, solving the 20-layer model, the FVC method is about 3
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Figure 16: Velocity fields obtained for 10-layer model with exchange (left column) and without
exchange (right column) using a mesh of 16 gridpoints at time t = 100 s.
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times faster than the second-order kinetic scheme.
Our final concern is to check the influence of the mass exchange terms on the multi-layer shallow

water results. To this end we perform numerical simulations with exchange term G given by (4)
and without exchange term (i.e. G = 0) and using different values of the eddy viscosity ν in
(6). Figure 16 exhibits the obtained velocity fields for 10-layer model using ν = 0, ν = 0.001 and
ν = 0.03. It is evident from the presented results that multi-layer model with mass exchange leads
to a recirculation process. Notice that, in this stationary solution, the global discharge for the
whole flow is equal to zero but the local discharge for each layer is not prescribed a priori. On the
other hand, the multi-layer model without mass exchange leads to a lake at rest situation which is
very similar to the one obtained by considering a single-layer model. It is worth remarking that,
since we consider in this case one mass equation for each layer, a stationary solution has to satisfy
the fact that the discharge is constant for each layer. Indeed, since the water discharge is equal
to zero at the wall boundaries, it has to vanish everywhere in the computational domain and as a
consequence we obtain a lake at rest solution.

It should be stressed that, compared to the classical bi-fluid model without exchange, there are
two places where the exchange takes place in the considered multi-layer model: (i) the first one is
the term G in the momentum equation and (ii) the second one comes from the fact that we consider
only one global mass equation for the whole flow model and not one mass equation per layer. These
two modelling facts are linked and can not be separated such that there is no meaning to consider
the current multi-layer model with G = 0 since, in its derivation from Navier-Stokes equations, the
term G appears naturally in the momentum equation. The main aim of the present study is to
consider only one global mass equation for the whole flow model. Therefore, the appearance of the
term G in the momentum equation is just a natural consequence of the first choice (i).

5 Conclusions

In this paper we have proposed a new multi-layered finite volume model for shallow water flows
with mass exchange. Coupling terms between the layers have been incorporated in the finite volume
model. The numerical method combines the attractive attributes of the finite volume discretization
and the method of characteristics to yield a robust algorithm for multi-layered shallow water flows
with mass exchange. The new method can compute the numerical fluxes corresponding to the
real state of water flow without relying on Riemann problem solvers. Furthermore, the proposed
approach does not require either nonlinear solution or special front tracking techniques. The
method is simple, accurate, easy to implement, and can be used to solve both steady and unsteady
shallow water problems. Numerical results and applications have been illustrated for several test
problems for multi-layered shallow water flows on flat and non-flat bottom. The presented results
demonstrate the accuracy of the new finite volume method and its capability to simulate multi-
layered shallow water flows in the hydraulic regimes considered. For the selected test examples, the
results obtained using the proposed finite volume method have been compared to those obtained
using the kinetic method widely used for multi-layer shallow water flows.

Future work will involve inclusion of viscous coupling a wave model component into the mod-
elling system to include the effects of bottom friction, wind stresses, eddy viscosity, and Coriolis
forces in a two-dimensional version of the proposed multi-layered hydrodynamic model. Numer-
ically, the present scheme is a suite of simple finite volume methods that are currently being
developed. Other method components will include application to morphodynamic modelling and
large-eddy simulation of multi-layered shallow water flows. In many situations, these models will
be solved on complex domains and over irregular bathymetries such as coastal scenarios. The
proposed finite volume method is particularly advantageous for these types of applications.
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