T.P. Billam
Onsager-Kraichnan condensation in decaying two-dimensional quantum turbulence
Billam, T.P.; Reeves, M.T.; Anderson, B.P.; Bradley, A.S.
Authors
M.T. Reeves
B.P. Anderson
A.S. Bradley
Abstract
Despite the prominence of Onsager’s point-vortex model as a statistical description of 2D classical turbulence, a first-principles development of the model for a realistic superfluid has remained an open problem. Here we develop a mapping of a system of quantum vortices described by the homogeneous 2D Gross-Pitaevskii equation (GPE) to the point-vortex model, enabling Monte Carlo sampling of the vortex microcanonical ensemble. We use this approach to survey the full range of vortex states in a 2D superfluid, from the vortex-dipole gas at positive temperature to negative-temperature states exhibiting both macroscopic vortex clustering and kinetic energy condensation, which we term an Onsager-Kraichnan condensate (OKC). Damped GPE simulations reveal that such OKC states can emerge dynamically, via aggregation of small-scale clusters into giant OKC clusters, as the end states of decaying 2D quantum turbulence in a compressible, finite-temperature superfluid. These statistical equilibrium states should be accessible in atomic Bose-Einstein condensate experiments.
Citation
Billam, T., Reeves, M., Anderson, B., & Bradley, A. (2014). Onsager-Kraichnan condensation in decaying two-dimensional quantum turbulence. Physical Review Letters, 112(14), Article 145301. https://doi.org/10.1103/physrevlett.112.145301
Journal Article Type | Article |
---|---|
Publication Date | Apr 1, 2014 |
Deposit Date | Jul 23, 2014 |
Publicly Available Date | Sep 9, 2014 |
Journal | Physical Review Letters |
Print ISSN | 0031-9007 |
Electronic ISSN | 1079-7114 |
Publisher | American Physical Society |
Peer Reviewed | Peer Reviewed |
Volume | 112 |
Issue | 14 |
Article Number | 145301 |
DOI | https://doi.org/10.1103/physrevlett.112.145301 |
Public URL | https://durham-repository.worktribe.com/output/1456240 |
Files
Published Journal Article
(1.7 Mb)
PDF
Copyright Statement
Reprinted with permission from the American Physical Society: Phys. Rev. Lett. 112, 145301 © (2014) by the American Physical Society. Readers may view, browse, and/or download material for temporary copying purposes only, provided these uses are for noncommercial personal purposes. Except as provided by law, this material may not be further reproduced, distributed, transmitted, modified, adapted, performed, displayed, published, or sold in whole or part, without prior written permission from the American Physical Society.
You might also like
Enstrophy Cascade in Decaying Two-Dimensional Quantum Turbulence
(2017)
Journal Article
Identifying a Superfluid Reynolds Number via Dynamical Similarity
(2015)
Journal Article
Spectral energy transport in two-dimensional quantum vortex dynamics
(2015)
Journal Article
Signatures of coherent vortex structures in a disordered two-dimensional quantum fluid
(2014)
Journal Article
Downloadable Citations
About Durham Research Online (DRO)
Administrator e-mail: dro.admin@durham.ac.uk
This application uses the following open-source libraries:
SheetJS Community Edition
Apache License Version 2.0 (http://www.apache.org/licenses/)
PDF.js
Apache License Version 2.0 (http://www.apache.org/licenses/)
Font Awesome
SIL OFL 1.1 (http://scripts.sil.org/OFL)
MIT License (http://opensource.org/licenses/mit-license.html)
CC BY 3.0 ( http://creativecommons.org/licenses/by/3.0/)
Powered by Worktribe © 2025
Advanced Search