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Onsager-Kraichnan Condensation in Decaying Two-Dimensional Quantum Turbulence

T.P. Billam,"" M. T. Reeves,' B. P. Anderson,” and A.S. Bradley"’

College of Optical Sciences, University of Arizona, Tucson, Arizona 85721, USA
(Received 24 July 2013; revised manuscript received 10 March 2014; published 11 April 2014)

Despite the prominence of Onsager’s point-vortex model as a statistical description of 2D classical
turbulence, a first-principles development of the model for a realistic superfluid has remained an open
problem. Here we develop a mapping of a system of quantum vortices described by the homogeneous 2D
Gross-Pitaevskii equation (GPE) to the point-vortex model, enabling Monte Carlo sampling of the vortex
microcanonical ensemble. We use this approach to survey the full range of vortex states in a 2D superfluid,
from the vortex-dipole gas at positive temperature to negative-temperature states exhibiting both
macroscopic vortex clustering and kinetic energy condensation, which we term an Onsager-Kraichnan
condensate (OKC). Damped GPE simulations reveal that such OKC states can emerge dynamically, via
aggregation of small-scale clusters into giant OKC clusters, as the end states of decaying 2D quantum
turbulence in a compressible, finite-temperature superfluid. These statistical equilibrium states should be
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accessible in atomic Bose-Einstein condensate experiments.
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The importance of the point-vortex model as a statistical
description of two-dimensional (2D) classical hydrody-
namic turbulence was identified by Onsager [1], who
predicted that the bounded phase space of a system of
vortices implies the existence of negative-temperature
states exhibiting clustering of like-circulation vortices
[2]. This model provides great insight into 2D classical
turbulence (CT) [3], and much subsequent work has
focused on the point-vortex model as an approximate
statistical description of decaying 2DCT [4-8]. While
classical fluids cannot directly realize the point-vortex
model, atomic Bose-Einstein condensates (BECs)—which
present an emerging theoretical [9-23] and experimental
[24-26] paradigm system for the study of quantum vortices
and 2D quantum turbulence (2DQT)—offer the possibility
of physically realizing Onsager’s negative-temperature
equilibrium states. A concrete realization of the point-
vortex model in an atomic superfluid will broaden our
understanding of the universality of 2D turbulence by
enabling new studies of spectral condensation of energy
at large scales [27-30], statistical mechanics of negative-
temperature states [31-33], the dynamics of macroscopic
vortex clustering [34], and the inverse energy cascade
[35-38], previously confined to 2DCT.

In this Letter we develop an analytic statistical descrip-
tion of the microstates of 2D quantum vortices within the
homogeneous Gross-Pitaevskii theory, and show that mac-
roscopically clustered vortex states emerge from small-
scale initial clustering as end products of decaying 2DQT.
As in CT, the homogeneous system offers the clearest
insight into the underlying physics, and is increasingly
relevant experimentally [39]. Consequently, our results
describe physics relevant to a wide range of possible vortex
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experiments in atomic BECs. By systematically sampling
the microcanonical ensemble for the vortex degrees of
freedom, we give a detailed, unifying view of the properties
of vortex matter in a homogeneous 2D superfluid. We
characterize the emergence of macroscopic clusters of
quantum vortices at negative temperatures, linked with
spectral condensation of energy at the system scale. In the
context of 2DQT we call this the Onsager-Kraichnan
condensate (OKC), as it represents a physically realizable
state that unifies Onsager’s negative-temperature point-
vortex clusters with the spectral condensation of kinetic
energy predicted in 2DCT by Kraichnan [27].

Atomic BECs support quantum vortices subject to thermal
and acoustic dissipative processes that may be detrimental to
the observation of an OKC. We assess the accessibility of the
excited states comprising an OKC via dynamical simulations
according to the damped Gross-Pitaevskii equation (dAGPE).
We find that our statistical approach describes the end states
of decaying 2DQT that emerge dynamically from low-
entropy initial states. Even for relatively small positive
point-vortex energies, the OKC emerges as a result of
statistically driven transfer of energy to large length scales.

To map the Gross-Pitaevskii theory to the point-vortex
model, we introduce an ansatz wave function for N vortices
in a homogeneous periodic square BEC of side L, with
posmons r; and 01rculat10ns hx;/m defined by charges

==+l (Z _ k; =0),

N

_ oif(r{r}x;}) H (r=r,)). (D

w(r, {r;}, {x;})

where y(r) is the radial profile of an isolated quantum
vortex core, obtained numerically [19]. Unlike the velocity
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field for point vortices in a doubly-periodic domain [31,32],
the associated quantum phase € does not, to our knowledge,
appear in the literature. We present an expression for 0 as a
rapidly convergent sum, obtained from a poorly convergent
sum over periodic replica vortices, in the Supplemental
Material [40]. The phase 0 yields a periodic superfluid
velocity v = (h/m)VO very close to the point-vortex
velocity, but consistently modified by the boundary con-
ditions such that 6(x +n,L,y +n,L) = 6(x,y) + {2z, for
all ny,n,,¢ € Z, remains a well-defined quantum phase.
To ensure that y(r) is accurate, we enforce a minimum-
separation constraint |r, —r,| > 27¢, where & = h/\/um
is the healing length (for BEC chemical potential u and
atomic mass m), and 1 < p # g < N.

Up to an additive constant, the total kinetic energy in
the point-vortex model is NQo&%e({r;},{«;}). Here, the
dimensionless point-vortex energy (per vortex) is given
by [32]

e({r;} {x;}) =

N-1 N _
IZ > kaqf<r” Lr‘f) @

p=1 g=p+1

where  f(r)=f(x.y)=2x[ly|(|y|-1)+1/6]—log{] T2
[1—2cos(2ﬂx)exp( 2z|y+s|)+exp(—4z|y+s|)]}, and
Qy = nh*ny/mé? is the unit of enstrophy for 2D homo-
geneous superfluid density n, [19]. Accounting for
compressible effects with the core ansatz y,(r) =
[nor?/(r* + &A72)]'/2, the incompressible kinetic energy
(IKE) spectrum of Eq. (1) at scales below the system size L
is well approximated by [19,40]

E'(k) = Q& Fy (k¢) {N“Z Z kpkgdo(kle, =) |,

p=1g=p+1
3)
where  Fj (k&) = A g(kéAT),  glz) = (2/4)[11(2/2)x
Ko(2/2)—10(2/2)K 1 (z/2)], A=Eny"2dy(0)/dr~0.825

and J, (1,, K,) are (modified) Bessel functions. Equation (3)
leads to a universal ultraviolet (UV, k > &) k=3 power law,
Ei(k) = C(k&)~3, where C = A’NQy&* [17,19]. In the
infrared (IR, k < &7') the average spectrum of N-vortex
configurations with randomly distributed vortices is equal
to the sum of N independent single-vortex spectra, giving
the k= power law E'(k) = C(k&)~!/A? [17,19,21].

The wave function y [Eq. (1)] is set entirely by the
vortex configuration, allowing us to adopt a statistical
treatment where, for each configuration ({r;}.{x;}), w
defines a microstate of the 2D BEC [54]. Aside from
the minimum-separation constraint, the phase 6 in Eq. (1)
establishes a one-to-one correspondence between the
N-vortex states of a 2D BEC and the microstates of the
classical point-vortex model. The set of all microstates y
at fixed point-vortex energy ¢ [Eq. (2)] defines a micro-
canonical ensemble; the measure of this set is the

structure function W(e) (which defines the system entropy
S(e) = kgIn[W(e)]). The normalized structure function,
w(e) = W(e)[[ deW(e)]™", is obtained numerically as a
histogram of & for random vortex configurations. We
sample the microcanonical ensemble at energy ¢ numeri-
cally, using a random walk to generate many N-vortex
configurations having energies within a given tolerance
[58]. Related microcanonical sampling techniques have
previously been applied to the classical point-vortex model
[31-34]. Averages of observables over this ensemble are
dominated by the most likely (highest-entropy) configura-
tions. For large N (ensuring ergodicity [31,32]) ensemble
averages define a statistical equilibrium corresponding
to time-averaged properties of the end states of decaying
quantum vortex turbulence at energy e¢.

To demonstrate that quantum vortices in a 2D BEC
can provide a physical realization of negative-temperature
states exhibiting macroscopic vortex clustering, we sample
the GPE microstates of the 2D BEC, compute the IKE
spectrum, and decompose the vortex configurations into
dipoles and clusters using the recursive cluster algorithm
(RCA) developed in Ref. [23]. For each cluster the RCA
yields the cluster charge x. and average radius r,. (average
distance of constituent vortices from the cluster center of
mass). We define the clustered fraction f. =) |k.|/N,
where k., is the charge of the sth cluster. We also define
N,  as the total number of vortices participating in all
clusters of charge =+|«.|. Finally, we introduce the corre-
lation functions ¢ = >N 378 | kag,q) /BN, where x\
is the charge of the gth nearest-neighbor to vortex p.
These are directly related to the functions Cy introduced in
Ref. [20]; a value of ¢z > 0 (< 0) indicates (anti-)corre-
lation between vortex charges, up to the nearest neighbors
of Bth order.

Figure 1(a) shows w(e) for N = 384 vortices in a doubly
periodic box of side L = 512&. The boundary between
positive- and negative-temperature states, €., lies at the
maximum of W(e), where the temperature T =
W(OW/0e)~! Jky = 0. We find e, ~—0.255 and the
mean energy (&) = 0 known from the point-vortex model
[32] despite the minimum-separation constraint. Figure 1
also shows the averages of the clustering measures
[Figs. 1(a),1(b)], the IKE spectrum [Fig. 1(c)], and the
distribution of N, [Fig. 1(d)] as a function of e. At e =0,
cg (f) is equal to 0 (1/2), indicating an uncorrelated
vortex distribution. The distribution of N, is strongly
skewed towards small clusters, with |1<C|ma" <20 and

rmax < 506 <« L, and the IKE spectrum follows the k!
law in the IR region. At energies € < 0 (where 7' > 0 for
e <eéey) cp (f) drops below 0 (1/2), indicating prolifer-
ation of vortex dipoles and reduced number, charge, and
radius of vortex clusters. As ¢ — —3 one obtains a vortex-
dipole gas with approximately the minimal spacing 2z¢
[see Fig. 2(a)]. The IKE spectrum lies below the k~! law at
large scales. At energies € > 0 (where 7' < 0) Fig. 1 shows
macroscopic vortex clustering and spectral condensation
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FIG. 1 (color online).

Properties of neutral N-vortex states in statistical equilibrium, corresponding to the end states of decaying 2DQT.

(a) Clustering measures f. and cp and structure function w(e); vertical gray lines indicate the expected energy ((¢)) and the boundary
between positive- and negative-temperature states (¢4, ). (b) Average and maximum cluster charges (|, |) and radii (r..) obtained using the
RCA (see text). (c) IKE spectrum in the point-vortex-like approximation [Eq. (3)] (solid black line, gray shaded area), and obtained from

the GPE wave functions [13,19] (magenta circles). Straight lines show analytical k™

3 and k~! power laws (see text). Inset: typical vortex

configurations (field of view L x L): dots indicate vortices, which have been sorted into dipoles, free vortices and clusters by the RCA
(see legend). Lines show the minimal spanning tree of clusters and identify dipoles. (d) Distribution of N, . Shaded areas behind curves
in (a),(b),(c) indicate the width of the equilibrium distribution (41 standard deviations). Ensemble sizes are given in [58].

of IKE. While low-order measures of clustering (cp, f.)
increase slowly with &, the distribution of vortices bifur-
cates, revealing the appearance of two (opposite-sign)
macroscopic clusters. Spectrally, the energy associated
with these clusters manifests itself as an OKC lying above
the k= power law at large scales. The charge and radius of
clusters (|x.|™* and r™*) grows more rapidly with ¢ than
(|x.|) and (r.) up to & ~ 50, highlighting the utility of the
RCA for the characterization of point-vortex states. Above
this energy, clusters increase in charge less rapidly, and
absorb further energy by shrinking in radius. For & 2 200
two clusters contain all the vortices, illustrating the
phenomenon of supercondensation [28]; in this regime
the k~! spectrum vanishes.

In contrast to the UV-divergent point-vortex model, the
universal k=3 UV asymptotic of the IKE spectrum [Eq. (3)]
implies a physical transition energy for the emergence
of the OKC, given by E,=Ei(e=0), where
Eiy(¢) = [dkE'(k). An analytic estimate of E, follows
from the second term in Eq. (3) averaging to zero at € = 0
(cg = Oforall B); correctly accounting for the discrete nature
of the spectrum [40] yields E,~ 4.735NQy£%, in good
agreement with the numerical value E,= 4.821NQ)&
obtained from y, which does not rely on the core ansatz
used to obtain Eq. (3). We find that the total IKE is very well
predicted by Ei () = Ey + eNQy&2. Thus, the appearance

of the OKC is due to the saturation of excited states: IKE
exceeding E( accumulates near the system scale, forming the
spectral feature lying above the k! spectrum. Note that
the OKC is a (quasi-)equilibrium phenomenon distinct from
the classical scenario of condensation in forced turbulence,
where the k—>/3 spectrum of the inverse energy cascade (IEC)
gives way to k> at low k associated with the dynamical
condensate [29,30,59].

To demonstrate that Fig. 1 provides a quantitative
description of decaying QT in a 2D BEC, and that
statistically-driven transfers of energy to large length scales
can occur in a compressible quantum fluid, we consider the
dynamics of nonequilibrium states in the dGPE [60-62].
For a 2D BEC (subject to tight harmonic confinement in the
z direction with oscillator length /.) this can be written as

P )

Oy (r, . V2
lhm:(]—ly) (— 2mJ‘
4)

ot
where ¢, = \/ghz ag/ml,, m is the atomic mass, and a; is
the s-wave scattering length. The dimensionless damplng
rate y describes collisions between condensate atoms
and noncondensate atoms, an important physical process
in real 2D superfluids that leads to effective viscosity [19]
and suppression of sound energy at high k. We use the
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FIG. 2 (color online).
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Dynamical dGPE evolution of nonequilibrium neutral N-vortex states towards statistical equilibrium (see also

animations in [40]). (a) RCA decomposition after equilibration (r = 95007 /), with initial conditions inset. Streamlines show the
incompressible velocity field. Field of view is L x L. (b) IKE spectrum, compared to the statistical equilibrium distribution from
Fig. 1(c) (gray solid line, thickness indicates -1 standard deviations). Other symbols in (a),(b) as in Fig. 1(c). (c) Clustered fraction f ..
(d) Correlation function ¢,. (e) Absolute charge k.| of the largest vortex cluster. Spectra and measures are shown as a moving average
from £ to ¢ + 5007/, and E(k) is normalized by N(t); decay of N(z) for £(0) > —3 is negligible (<5%). Horizontal shading in (c)—(e)
shows the statistical equilibrium distributions from Figs. 1(a) and 1(b) (shaded areas indicate +1 standard deviations). Note that we
compare the £(0) = —3 evolution to the statistical equilibrium at e = —2.5, since dipole annihilation [for e = —3, N(10*) = 178] leads

to £(10%) ~ —2.5.

experimentally realistic value y = 10~* [25] in our simu-
lations. We use a random walk to obtain a neutral
configuration of N’ =24 vortices in a periodic box of
length L' = 128¢& at energy €. A 42 tiling of this configu-
ration, with each vortex subject to Gaussian position noise
(variance &), provides a nonequilibrium, low-entropy state
of N = 384 vortices in a box with L = 512¢ and energy ¢
(found by adjusting ¢'). This state is then evolved to
time 10*%/u in the dGPE, over which time we find that
the compressible energy does not increase [and &(¢)
does not decay] significantly, supporting our statistical
description [63].

Figure 2 shows the time evolution of the vortex con-
figuration for three different initial energies [Fig. 2(a)]
with IKE spectra [Fig. 2(b)] and clustering measures
[Figs. 2(c)-2(e)] determined by short-time averaging of
individual runs of the dGPE. While the approach to
complete equilibrium is slow, Fig. 2(e) shows that the
charge of the largest cluster equilibrates more rapidly
(by t ~2000%/u). For £(0) = —3, the dynamics consists
largely of dipole-dipole collisions and vortex-antivortex

annihilation (increasing the energy per vortex e, [32]),
and exhibits a time-invariant IKE spectrum; these positive-
temperature point-vortex states have no analog in 2DCT
[32]. For &(0) = 0, the approach to equilibrium involves
significant dipole-cluster interactions that redistribute the
cluster charges, decreasing f. and cp while increasing
|xc.|™*. This redistribution transfers energy to large scales,
producing an approximate k~! power law in the IR [note
that the time-averaged spectrum is expected to fluctuate
relative to the 10*-configuration average in Fig. 1(c)]. For
€(0) = 6 the dynamics is reminiscent of 2DCT. Energy
transfer to large scales builds an OKC, with the vortices
grouping into two macroscopic clusters [64]. Although a
steady k~/3 spectrum is absent (and would require con-
tinuous forcing and damping to establish a steady inertial
range [23]) some intermittent x>/ behavior is evident
[40]. The equilibrium distribution of vortices outside of the
OKC closely resembles the uncorrelated (¢ = 0) state [2]
and has a low level of clustering. As the initial condi-
tion contains many small clusters, this counterintuitively
causes low-order measures of clustering [f,. and ¢, in
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Figs. 2(c)-2(d), and all c¢p for B < 10] to decay during
OKC formation. Thus, high-order clustering information
provided by the RCA is vital in identifying OKC: the rapid
increase of |k.|™* for £(0) = 6 in Fig. 2(e) contrasts with
the cases €(0) = 0, —3, indicating the emergence of the
OKC. The demonstration of a statistically driven transfer
of kinetic energy to large scales underpins the existence
of an IEC in far-from-equilibrium 2DQT in scenarios with
appreciable vortex clustering [19,23], and is complemen-
tary to the direct energy cascade identified in scenarios
dominated by vortex-dipole recombination [13,65].

We have developed a first-principles realization of
Onsager’s point-vortex model in a 2D superfluid, and
observe the upscale energy transfer of 2DCT in decaying
2DQT described by the damped Gross-Pitaevskii equation.
Configurational analysis of the vortex states and associated
energy spectra demonstrate the emergence of an Onsager—
Kraichnan condensate of quantum vortices occurring at
negative temperatures in equilibrium, and as the end states
of decaying 2DQT. The microcanonical sampling approach
opens a new direction in the study of 2DQT, enabling
systematic studies of far-from-equilibrium dynamics,
energy transport, inertial ranges, and other emergent
phenomena in 2DQT, and points the way to experimental
realization of Onsager-Kraichnan condensation.

We thank P.B. Blakie and A.L. Fetter for valuable
comments. This work was supported by The New Zealand
Marsden Fund, and a Rutherford Discovery Fellowship of
the Royal Society of New Zealand. B. P. A. is supported by
the U.S. National Science Foundation (PHY-1205713). We
are grateful for the use of NZ eScience Infrastructure HPC
facilities (http://www.nesi.org.nz).

“Corresponding author.
thomas.billam @otago.ac.nz
TCorresponding author.
ashton.bradley @otago.ac.nz
[1] L. Onsager, Nuovo Cimento Suppl. 6, 279 (1949).
[2] G. L. Eyink and K. R. Sreenivasan, Rev. Mod. Phys. 78, 87
(2006).
[3] G. Boffetta and R. E. Ecke, Annu. Rev. Fluid Mech. 44, 427
(2012).
[4] P. Tabeling, Phys. Rep. 362, 1 (2002).
[5] D. Montgomery and G. Joyce, Phys. Fluids 17, 1139 (1974).
[6] D. Montgomery, W.H. Matthaeus, W.T. Stribling, D.
Martinez, and S. Oughton, Phys. Fluids A 4, 3 (1992).
[7]1 J. Miller, Phys. Rev. Lett. 65, 2137 (1990).
[8] R. Robert and J. Sommeria, J. Fluid Mech. 229, 291 (1991).
[9] N. G. Parker and C. S. Adams, Phys. Rev. Lett. 95, 145301
(2005).
[10] S. Nazarenko and M. Onorato, J. Low Temp. Phys. 146, 31
(2007).
[11] T.L. Horng, C.H. Hsueh, S.W. Su, Y.M. Kao, and
S.C. Gou, Phys. Rev. A 80, 023618 (2009).
[12] R. Numasato and M. Tsubota, J. Low Temp. Phys. 158, 415
(2010).

[13] R. Numasato, M. Tsubota, and V. S. L'vov, Phys. Rev. A 81,
063630 (2010).

[14] K. Sasaki, N. Suzuki, and H. Saito, Phys. Rev. Lett. 104,
150404 (2010).

[15] A.C. White, C.F. Barenghi, N.P. Proukakis, A.J. Youd,
and D.H. Wacks, Phys. Rev. Lett. 104, 075301
(2010).

[16] B. Nowak, D. Sexty, and T. Gasenzer, Phys. Rev. B 84,
020506 (2011).

[17] B. Nowak, J. Schole, D. Sexty, and T. Gasenzer, Phys. Rev.
A 85, 043627 (2012).

[18] J. Schole, B. Nowak, and T. Gasenzer, Phys. Rev. A 86,
013624 (2012).

[19] A.S. Bradley and B. P. Anderson, Phys. Rev. X 2, 041001
(2012).

[20] A.C. White, C. F. Barenghi, and N. P. Proukakis, Phys. Rev.
A 86, 013635 (2012).

[21] T. Kusumura, H. Takeuchi, and M. Tsubota, J. Low Temp.
Phys. 171, 563 (2013).

[22] M. Tsubota, M. Kobayashi, and H. Takeuchi, Phys. Rep.
522, 191 (2013).

[23] M. T. Reeves, T.P. Billam, B.P. Anderson, and A.S.
Bradley, Phys. Rev. Lett. 110, 104501 (2013).

[24] T.W. Neely, E.C. Samson, A.S. Bradley, M.J. Davis,
and B.P. Anderson, Phys. Rev. Lett. 104, 160401
(2010).

[25] T. W. Neely, A.S. Bradley, E.C. Samson, S.J. Rooney,
E.M. Wright, K.J. H. Law, R. Carretero-Gonzélez, P. G.
Kevrekidis, M.J. Davis, and B.P. Anderson, Phys. Rev.
Lett. 111, 235301 (2013).

[26] K. E. Wilson, E. C. Samson, Z.L. Newman, T. W. Neely,
and B.P. Anderson, Annu. Rev. Cold At. Mol. 7, 261
(2013).

[27] R. H. Kraichnan, J. Fluid Mech. 67, 155 (1975).

[28] R. H. Kraichnan and D. Montgomery, Rep. Prog. Phys. 43,
547 (1980).

[29] M. Chertkov, C. Connaughton, I. Kolokolov, and V.
Lebedev, Phys. Rev. Lett. 99, 084501 (2007).

[30] H. Xia, H. Punzmann, G. Falkovich, and M. G. Shats, Phys.
Rev. Lett. 101, 194504 (2008).

[31] J. B. Weiss and J. C. McWilliams, Phys. Fluids A 3, 835
(1991).

[32] L. Campbell and K. O’Neil, J. Stat. Phys. 65, 495 (1991).

[33] M. M. Sano, Y. Yatsuyanagi, T. Yoshida, and H. Tomita,
J. Phys. Soc. Jpn. 76, 064001 (2007).

[34] Y. Yatsuyanagi, Y. Kiwamoto, H. Tomita, M. M. Sano,
T. Yoshida, and T. Ebisuzaki, Phys. Rev. Lett. 94, 054502
(2005).

[35] E.D. Siggia and H. Aref, Phys. Fluids 24, 171 (1981).

[36] R. H. Kraichnan, Phys. Fluids 10, 1417 (1967).

[37] C.E. Leith, Phys. Fluids 11, 671 (1968).

[38] G. K. Batchelor, Phys. Fluids 12, 11-233 (1969).

[39] A.L. Gaunt, T.F. Schmidutz, I. Gotlibovych, R. P. Smith,
and Z. Hadzibabic, Phys. Rev. Lett. 110, 200406 (2013).

[40] See Supplemental Material http://link.aps.org/supplemental/
10.1103/PhysRevLett.112.145301, which provides deriva-
tions of the quantum phase 6, the IKE spectrum and the
estimated OKC transition energy used in the main text,
summarizes our numerical methods, contains movies of
the time evolution shown in Fig. 2, and includes
Refs. [41-53].

145301-5


http://dx.doi.org/10.1007/BF02780991
http://dx.doi.org/10.1103/RevModPhys.78.87
http://dx.doi.org/10.1103/RevModPhys.78.87
http://dx.doi.org/10.1146/annurev-fluid-120710-101240
http://dx.doi.org/10.1146/annurev-fluid-120710-101240
http://dx.doi.org/10.1016/S0370-1573(01)00064-3
http://dx.doi.org/10.1063/1.1694856
http://dx.doi.org/10.1063/1.858525
http://dx.doi.org/10.1103/PhysRevLett.65.2137
http://dx.doi.org/10.1017/S0022112091003038
http://dx.doi.org/10.1103/PhysRevLett.95.145301
http://dx.doi.org/10.1103/PhysRevLett.95.145301
http://dx.doi.org/10.1007/s10909-006-9271-z
http://dx.doi.org/10.1007/s10909-006-9271-z
http://dx.doi.org/10.1103/PhysRevA.80.023618
http://dx.doi.org/10.1007/s10909-009-9965-0
http://dx.doi.org/10.1007/s10909-009-9965-0
http://dx.doi.org/10.1103/PhysRevA.81.063630
http://dx.doi.org/10.1103/PhysRevA.81.063630
http://dx.doi.org/10.1103/PhysRevLett.104.150404
http://dx.doi.org/10.1103/PhysRevLett.104.150404
http://dx.doi.org/10.1103/PhysRevLett.104.075301
http://dx.doi.org/10.1103/PhysRevLett.104.075301
http://dx.doi.org/10.1103/PhysRevB.84.020506
http://dx.doi.org/10.1103/PhysRevB.84.020506
http://dx.doi.org/10.1103/PhysRevA.85.043627
http://dx.doi.org/10.1103/PhysRevA.85.043627
http://dx.doi.org/10.1103/PhysRevA.86.013624
http://dx.doi.org/10.1103/PhysRevA.86.013624
http://dx.doi.org/10.1103/PhysRevX.2.041001
http://dx.doi.org/10.1103/PhysRevX.2.041001
http://dx.doi.org/10.1103/PhysRevA.86.013635
http://dx.doi.org/10.1103/PhysRevA.86.013635
http://dx.doi.org/10.1007/s10909-012-0827-9
http://dx.doi.org/10.1007/s10909-012-0827-9
http://dx.doi.org/10.1016/j.physrep.2012.09.007
http://dx.doi.org/10.1016/j.physrep.2012.09.007
http://dx.doi.org/10.1103/PhysRevLett.110.104501
http://dx.doi.org/10.1103/PhysRevLett.104.160401
http://dx.doi.org/10.1103/PhysRevLett.104.160401
http://dx.doi.org/10.1103/PhysRevLett.111.235301
http://dx.doi.org/10.1103/PhysRevLett.111.235301
http://dx.doi.org/10.1142/9789814440400_0007
http://dx.doi.org/10.1142/9789814440400_0007
http://dx.doi.org/10.1017/S0022112075000225
http://dx.doi.org/10.1088/0034-4885/43/5/001
http://dx.doi.org/10.1088/0034-4885/43/5/001
http://dx.doi.org/10.1103/PhysRevLett.99.084501
http://dx.doi.org/10.1103/PhysRevLett.101.194504
http://dx.doi.org/10.1103/PhysRevLett.101.194504
http://dx.doi.org/10.1063/1.858014
http://dx.doi.org/10.1063/1.858014
http://dx.doi.org/10.1007/BF01053742
http://dx.doi.org/10.1143/JPSJ.76.064001
http://dx.doi.org/10.1103/PhysRevLett.94.054502
http://dx.doi.org/10.1103/PhysRevLett.94.054502
http://dx.doi.org/10.1063/1.863225
http://dx.doi.org/10.1063/1.1762301
http://dx.doi.org/10.1063/1.1691968
http://dx.doi.org/10.1063/1.1692443
http://dx.doi.org/10.1103/PhysRevLett.110.200406
http://link.aps.org/supplemental/10.1103/PhysRevLett.112.145301
http://link.aps.org/supplemental/10.1103/PhysRevLett.112.145301
http://link.aps.org/supplemental/10.1103/PhysRevLett.112.145301
http://link.aps.org/supplemental/10.1103/PhysRevLett.112.145301
http://link.aps.org/supplemental/10.1103/PhysRevLett.112.145301
http://link.aps.org/supplemental/10.1103/PhysRevLett.112.145301
http://link.aps.org/supplemental/10.1103/PhysRevLett.112.145301

PRL 112, 145301 (2014)

PHYSICAL REVIEW LETTERS

week ending
11 APRIL 2014

[41] B. C. Berndt, P. T. Joshi, and B. M. Wilson, Glasg. Math. J.
22, 199 (1981).

[42] A.L. Fetter, J. Low Temp. Phys. 16, 533 (1974).

[43] A.S.Bradley, C. W. Gardiner, and M. J. Davis, Phys. Rev. A
77, 033616 (2008).

[44] C. W. Gardiner and M. J. Davis, J. Phys. B 36, 4731 (2003).

[45] M. T. Reeves, B. P. Anderson, and A. S. Bradley, Phys. Rev.
A 86, 053621 (2012).

[46] S.J. Rooney, T.W. Neely, B.P. Anderson, and A.S.
Bradley, Phys. Rev. A 88, 063620 (2013).

[47] O. Tornkvist and E. Schroder, Phys. Rev. Lett. 78, 1908
(1997).

[48] M. Kobayashi and M. Tsubota, Phys. Rev. Lett. 97, 145301
(2006).

[49] J. C. McWilliams, J. Fluid Mech. 219, 361 (1990).

[50] Z. Xiao, M. Wan, S. Chen, and G. Eyink, J. Fluid Mech.
619, 1 (2009).

[51] J.P. Boyd, Chebyshev and Fourier Spectral Methods
(Dover, New York, 2000), 2nd ed.

[52] P.B. Blakie, Phys. Rev. E 78, 026704 (2008).

[53] V. Shukla, M. Brachet, and R. Pandit, New J. Phys. 15,
113025 (2013).

[54] We use the term ‘“2D BEC” to denote a BEC externally
confined in one dimension such that the vortex dynamics are
effectively 2D [55], while phase coherence is preserved,
avoiding the Berezinskii-Kosterlitz-Thouless regime [56,57].

[55] S.J. Rooney, P.B. Blakie, B.P. Anderson, and A.S.
Bradley, Phys. Rev. A 84, 023637 (2011).

[56] Z. Hadzibabic, P. Kruger, M. Cheneau, B. Battelier, and
J. Dalibard, Nature (London) 441, 1118 (20006).

[57] P. Clade, C. Ryu, A. Ramanathan, K. Helmerson, and
W.D. Phillips, Phys. Rev. Lett. 102, 170401 (2009).

[58] We use energy toleranced- max(0.05¢,5 x 1073). Ensemble
sizes in Fig. 1 are 10? [magenta circles in (c)], 10* [other
curves in (¢),(d)], 107 [structure function in (a)], and 103
[other curves in (a),(b)].

[59] C.-k. Chan, D. Mitra, and A. Brandenburg, Phys. Rev. E 85,
036315 (2012).

[60] M. Tsubota, K. Kasamatsu, and M. Ueda, Phys. Rev. A 65,
023603 (2002).

[61] A.A. Penckwitt, R.J. Ballagh, and C. W. Gardiner, Phys.
Rev. Lett. 89, 260402 (2002).

[62] P. B. Blakie, A.S. Bradley, M. J. Davis, R. J. Ballagh, and
C. W. Gardiner, Adv. Phys. 57, 363 (2008).

[63] We have confirmed that quantitatively similar vortex
dynamics occur in simulations of the projected Gross-
Pitaevskii equation [62,66-68] for y = 0, demonstrating
that Hamiltonian dynamics also lead to OKC formation for
€(0) = 6 [40].

[64] Note that the OKC is not composed of the same vortices at
all times; the condensate gradually exchanges vortices with
the uncorrelated background.

[65] P.M. Chesler, H. Liu, and A. Adams, Science 341, 368
(2013).

[66] M.J. Davis, S. A. Morgan, and K. Burnett, Phys. Rev. Lett.
87, 160402 (2001).

[67] M.J. Davis and P. B. Blakie, Phys. Rev. Lett. 96, 060404
(20006).

[68] T.P. Simula and P. B. Blakie, Phys. Rev. Lett. 96, 020404
(20006).

145301-6


http://dx.doi.org/10.1017/S0017089500004675
http://dx.doi.org/10.1017/S0017089500004675
http://dx.doi.org/10.1007/BF00654901
http://dx.doi.org/10.1103/PhysRevA.77.033616
http://dx.doi.org/10.1103/PhysRevA.77.033616
http://dx.doi.org/10.1088/0953-4075/36/23/010
http://dx.doi.org/10.1103/PhysRevA.86.053621
http://dx.doi.org/10.1103/PhysRevA.86.053621
http://dx.doi.org/10.1103/PhysRevA.88.063620
http://dx.doi.org/10.1103/PhysRevLett.78.1908
http://dx.doi.org/10.1103/PhysRevLett.78.1908
http://dx.doi.org/10.1103/PhysRevLett.97.145301
http://dx.doi.org/10.1103/PhysRevLett.97.145301
http://dx.doi.org/10.1017/S0022112090002981
http://dx.doi.org/10.1017/S0022112008004266
http://dx.doi.org/10.1017/S0022112008004266
http://dx.doi.org/10.1103/PhysRevE.78.026704
http://dx.doi.org/10.1088/1367-2630/15/11/113025
http://dx.doi.org/10.1088/1367-2630/15/11/113025
http://dx.doi.org/10.1103/PhysRevA.84.023637
http://dx.doi.org/10.1038/nature04851
http://dx.doi.org/10.1103/PhysRevLett.102.170401
http://dx.doi.org/10.1103/PhysRevE.85.036315
http://dx.doi.org/10.1103/PhysRevE.85.036315
http://dx.doi.org/10.1103/PhysRevA.65.023603
http://dx.doi.org/10.1103/PhysRevA.65.023603
http://dx.doi.org/10.1103/PhysRevLett.89.260402
http://dx.doi.org/10.1103/PhysRevLett.89.260402
http://dx.doi.org/10.1080/00018730802564254
http://dx.doi.org/10.1126/science.1233529
http://dx.doi.org/10.1126/science.1233529
http://dx.doi.org/10.1103/PhysRevLett.87.160402
http://dx.doi.org/10.1103/PhysRevLett.87.160402
http://dx.doi.org/10.1103/PhysRevLett.96.060404
http://dx.doi.org/10.1103/PhysRevLett.96.060404
http://dx.doi.org/10.1103/PhysRevLett.96.020404
http://dx.doi.org/10.1103/PhysRevLett.96.020404

