Christoph Englert
Emergence of the electroweak scale through the Higgs portal
Englert, Christoph; Jaeckel, Joerg; Khoze, V.V.; Spannowsky, Michael
Authors
Joerg Jaeckel
Professor Valentin Khoze valya.khoze@durham.ac.uk
Professor
Professor Michael Spannowsky michael.spannowsky@durham.ac.uk
Director
Abstract
Having discovered a candidate for the final piece of the Standard Model, the Higgs boson, the question remains why its vacuum expectation value and its mass are so much smaller than the Planck scale (or any other high scale of new physics). One elegant solution was provided by Coleman and Weinberg, where all mass scales are generated from dimensionless coupling constants via dimensional transmutation. However, the original Coleman-Weinberg scenario predicts a Higgs mass which is too light; it is parametrically suppressed compared to the mass of the vectors bosons, and hence is much lighter than the observed value. In this paper we argue that a mass scale, generated via the Coleman-Weinberg mechanism in a hidden sector and then transmitted to the Standard Model through a Higgs portal, can naturally explain the smallness of the electroweak scale compared to the UV cutoff scale, and at the same time be consistent with the observed value. We analyse the phenomenology of such a model in the context of present and future colliders and low energy measurements.
Citation
Englert, C., Jaeckel, J., Khoze, V., & Spannowsky, M. (2013). Emergence of the electroweak scale through the Higgs portal. Journal of High Energy Physics, 2013(4), Article 60. https://doi.org/10.1007/jhep04%282013%29060
Journal Article Type | Article |
---|---|
Publication Date | Apr 10, 2013 |
Deposit Date | May 20, 2014 |
Publicly Available Date | Jun 20, 2014 |
Journal | Journal of High Energy Physics |
Print ISSN | 1126-6708 |
Electronic ISSN | 1029-8479 |
Publisher | Scuola Internazionale Superiore di Studi Avanzati (SISSA) |
Peer Reviewed | Peer Reviewed |
Volume | 2013 |
Issue | 4 |
Article Number | 60 |
DOI | https://doi.org/10.1007/jhep04%282013%29060 |
Public URL | https://durham-repository.worktribe.com/output/1454651 |
Files
arXiv version
(3.8 Mb)
PDF
Copyright Statement
arXiv version
You might also like
Gravitational waves and dark matter from classical scale invariance
(2023)
Journal Article
Multiparticle amplitudes in a scalar EFT
(2022)
Journal Article
Central instanton production
(2022)
Journal Article
Small instantons and the strong CP problem in composite Higgs models
(2021)
Journal Article
Hunting for QCD instantons at the LHC in events with large rapidity gaps
(2021)
Journal Article
Downloadable Citations
About Durham Research Online (DRO)
Administrator e-mail: dro.admin@durham.ac.uk
This application uses the following open-source libraries:
SheetJS Community Edition
Apache License Version 2.0 (http://www.apache.org/licenses/)
PDF.js
Apache License Version 2.0 (http://www.apache.org/licenses/)
Font Awesome
SIL OFL 1.1 (http://scripts.sil.org/OFL)
MIT License (http://opensource.org/licenses/mit-license.html)
CC BY 3.0 ( http://creativecommons.org/licenses/by/3.0/)
Powered by Worktribe © 2025
Advanced Search