Skip to main content

Research Repository

Advanced Search

Contact metamorphism of Precambrian gneiss by the Skaergaard Intrusion

Bufe, N. Aaron; Holness, Marian B.; Humphreys, Madeleine C.S.

Contact metamorphism of Precambrian gneiss by the Skaergaard Intrusion Thumbnail


Authors

N. Aaron Bufe

Marian B. Holness



Abstract

The Tertiary Skaergaard intrusion, East Greenland, intruded at the shallow crustal unconformity between Precambrian amphibolite-facies gneisses and overlying Tertiary Plateau Basalts. Maximum contact metamorphic temperatures in quartzo-feldspathic gneisses were determined in two sample traverses across the aureole on the western contact of the intrusion using a combination of microstructural observations (both optical and cathodoluminescence) and the titanium-in-quartz (TitaniQ) thermometer. The onset of recrystallization of the quartz in the gneisses occurred between 390 and 340 m from the contact whereas H2O-fluxed melting occurred in gneisses closer than 130 m from the contact (where T > ∼ 675°C). The maximum temperature recorded by quartz at the contact is ∼865 ± 70°C. Melt fractions reach 50–60 vol. % in some samples although the melt is heterogeneously distributed on all scales. Minor bands of amphibolite-facies mafic gneiss are extensively reacted to an anhydrous pyroxene-bearing hornfels close to the contact, whereas those further than ∼130 m are overprinted by a greenschist-facies assemblage. Discrepancies between the expected temperature for the amphibolite- to greenschist-facies reaction and temperatures obtained from adjacent quartzo-feldspathic gneisses are consistent with the formation of the anhydrous pyroxene hornfels directly from the mafic gneiss, with the lower-grade greenschist-facies assemblage forming on the retrograde path after the establishment of limited hydrothermal activity. It is unlikely that devolatilization reactions in the gneiss produced sufficient H2O to account for the pegmatitic features formed in the Marginal Border Series in the intrusion. A simple one-dimensional thermal model, neglecting any advection of heat by hydrothermal circulation, was fitted to the profile of maximum temperature through the aureole. The generally lower temperatures seen in the gneiss compared with those previously reported for the contact metamorphosed basalts higher up the walls of the intrusion are consistent with a heterogeneous release of latent heat of crystallization.

Citation

Bufe, N. A., Holness, M. B., & Humphreys, M. C. (2014). Contact metamorphism of Precambrian gneiss by the Skaergaard Intrusion. Journal of Petrology, 55(8), 1595-1617. https://doi.org/10.1093/petrology/egu035

Journal Article Type Article
Acceptance Date May 30, 2014
Publication Date Aug 1, 2014
Deposit Date May 31, 2014
Publicly Available Date Jul 16, 2014
Journal Journal of Petrology
Print ISSN 0022-3530
Electronic ISSN 1460-2415
Publisher Oxford University Press
Peer Reviewed Peer Reviewed
Volume 55
Issue 8
Pages 1595-1617
DOI https://doi.org/10.1093/petrology/egu035
Keywords Metamorphic aureole, Skaergaard, Cathodoluminescence, Titanium-in-quartz thermometry.
Public URL https://durham-repository.worktribe.com/output/1452081

Files

Published Journal Article (3.7 Mb)
PDF

Publisher Licence URL
http://creativecommons.org/licenses/by/3.0/

Copyright Statement
© The Author 2014. Published by Oxford University Press.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/3.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.






You might also like



Downloadable Citations