Nan Zhao
Adaptive Energy-Efficient Power Allocation in Green Interference Alignment Based Wireless Networks
Zhao, Nan; Yu, Richard; Sun, Hongjian
Abstract
Interference alignment (IA) is a promising technique for interference management in wireless networks. However, the sum rate may fall short of the theoretical maximum especially at low signal-to-noise ratio (SNR) levels since IA mainly concentrates on mitigating the interference, instead of improving the quality of desired signal. Moreover, most of the previous works focused on improving spectrum efficiency, but the energy efficiency aspect is largely ignored. In this paper, an adaptive energy-efficient IA algorithm is proposed through power allocation and transmission-mode adaptation for green IAbased wireless networks. The power allocation problem for IA is first analyzed, then we propose a power allocation scheme that optimizes the energy efficiency of IA-based wireless networks. When SNR is low, the transmitted power of some users may become zero. Thus the users with low transmitted power are turned into the sleep mode in our scheme to save energy. The transmitted power and transmission mode of the remaining active users are adapted again to further improve the energy efficiency of the network. To guarantee the interests of all the users, fairness among users is also considered in the proposed scheme. Simulation results are presented to show the effectiveness of the proposed algorithm in improving the energy efficiency of IAbased wireless networks.
Citation
Zhao, N., Yu, R., & Sun, H. (2015). Adaptive Energy-Efficient Power Allocation in Green Interference Alignment Based Wireless Networks. IEEE Transactions on Vehicular Technology, 64(9), 4268-4281. https://doi.org/10.1109/tvt.2014.2362005
Journal Article Type | Article |
---|---|
Acceptance Date | Sep 28, 2014 |
Online Publication Date | Oct 8, 2014 |
Publication Date | Sep 15, 2015 |
Deposit Date | Nov 28, 2014 |
Publicly Available Date | Dec 1, 2014 |
Journal | IEEE Transactions on Vehicular Technology |
Print ISSN | 0018-9545 |
Electronic ISSN | 1939-9359 |
Publisher | Institute of Electrical and Electronics Engineers |
Peer Reviewed | Peer Reviewed |
Volume | 64 |
Issue | 9 |
Pages | 4268-4281 |
DOI | https://doi.org/10.1109/tvt.2014.2362005 |
Public URL | https://durham-repository.worktribe.com/output/1449701 |
Files
Accepted Journal Article
(6.1 Mb)
PDF
Copyright Statement
© 2014 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.
You might also like
COPS: Controller Placement in Next-Generation Software Defined Edge-Cloud Networks
(2025)
Presentation / Conference Contribution
Energy-based Predictive Root Cause Analysis for Real-Time Anomaly Detection in Big Data Systems
(2025)
Presentation / Conference Contribution
Green Reinforcement and Split Learning Framework for Edge-Fog-Cloud Continuum in 6G Networks
(2025)
Presentation / Conference Contribution
Integrated Sensing and Communications With Mixed Fields Using Transmit Beamforming
(2024)
Journal Article
Downloadable Citations
About Durham Research Online (DRO)
Administrator e-mail: dro.admin@durham.ac.uk
This application uses the following open-source libraries:
SheetJS Community Edition
Apache License Version 2.0 (http://www.apache.org/licenses/)
PDF.js
Apache License Version 2.0 (http://www.apache.org/licenses/)
Font Awesome
SIL OFL 1.1 (http://scripts.sil.org/OFL)
MIT License (http://opensource.org/licenses/mit-license.html)
CC BY 3.0 ( http://creativecommons.org/licenses/by/3.0/)
Powered by Worktribe © 2025
Advanced Search