Arimantas Lionikas
Analyses of muscle spindles in the soleus of six inbred mouse strains
Lionikas, Arimantas; Smith, Coiln J.; Smith, Tracey L.; Bünger, Lutz; Banks, Robert W.; Bewick, Guy S.
Authors
Coiln J. Smith
Tracey L. Smith
Lutz Bünger
Robert Banks r.w.banks@durham.ac.uk
Academic Visitor
Guy S. Bewick
Abstract
Adult muscle size and fibre-type composition are heritable traits that vary substantially between individuals. We used inbred mouse strains in which soleus muscle mass varied by an order of magnitude to explore whether properties of muscle spindles can also be influenced by genetic factors. Skip-serial cross-sections of soleus muscles dissected from 15 male mice of BEH, BEL, C57BL/6J, DUH, LG/J and SM/J strains were analysed for number of muscle spindles and characteristics of intrafusal and extrafusal fibres following ATPase staining. The BEL and DUH strains determined the range of: soleus mean size, a 10-fold difference from 2.1 to 22.3 mg, respectively; the mean number of extrafusal fibres, a 2.5-fold difference from 497 to 1249; and mean fibre-cross-sectional area, three-fold difference, e.g. for type 1 fibres, from 678 to 1948 μm2. The range of mean proportion of type 1 fibres was determined by C57BL/6J (31%) and DUH (64%) strains. The mean number of spindles per muscle ranged between nine (LG/J) and 13 (BEL) (strain effect P < 0.02). Genetic correlations between spindle count and muscle weight or properties of extrafusal fibres were weak and not statistically significant. However, there was a strong correlation between the proportion of spindles with more than one bag2 fibre and the proportion of extrafusal fibres that were of type 1, and strain-dependent variation in the numbers of such spindles was statistically significant. The numbers of intrafusal fibres per spindle ranged from 2 to 8, with the most common complement of four found in 75.6% of spindles. There were no significant differences between the strains in the mean numbers of intrafusal fibres; however, the variance of the number was significantly less for the C57BL/6J strain than for any of the others. We conclude that abundance of muscle spindles and their intrafusal-fibre composition are substantially determined by genetic factors, which are different from those affecting muscle size and properties of the extrafusal fibres.
Citation
Lionikas, A., Smith, C. J., Smith, T. L., Bünger, L., Banks, R. W., & Bewick, G. S. (2013). Analyses of muscle spindles in the soleus of six inbred mouse strains. Journal of Anatomy, 223(3), 289-296. https://doi.org/10.1111/joa.12076
Journal Article Type | Article |
---|---|
Acceptance Date | Jun 3, 2013 |
Publication Date | 2013-09 |
Deposit Date | Jul 29, 2013 |
Journal | Journal of Anatomy |
Print ISSN | 0021-8782 |
Electronic ISSN | 1469-7580 |
Publisher | Wiley |
Peer Reviewed | Peer Reviewed |
Volume | 223 |
Issue | 3 |
Pages | 289-296 |
DOI | https://doi.org/10.1111/joa.12076 |
Keywords | Genetics, Intrafusal fibers, Proprioceptors. |
Public URL | https://durham-repository.worktribe.com/output/1449515 |
You might also like
Biophysical model of muscle spindle encoding
(2023)
Journal Article
The association between muscle architecture and muscle spindle abundance
(2023)
Journal Article
Molecular characterization of the intact mouse muscle spindle using a multi-omics approach
(2023)
Journal Article
Downloadable Citations
About Durham Research Online (DRO)
Administrator e-mail: dro.admin@durham.ac.uk
This application uses the following open-source libraries:
SheetJS Community Edition
Apache License Version 2.0 (http://www.apache.org/licenses/)
PDF.js
Apache License Version 2.0 (http://www.apache.org/licenses/)
Font Awesome
SIL OFL 1.1 (http://scripts.sil.org/OFL)
MIT License (http://opensource.org/licenses/mit-license.html)
CC BY 3.0 ( http://creativecommons.org/licenses/by/3.0/)
Powered by Worktribe © 2024
Advanced Search