M.L. González-Martínez
Sympathetic cooling of fluorine atoms with ultracold atomic hydrogen
González-Martínez, M.L.; Hutson, Jeremy M.
Abstract
We consider the prospect of using ultracold hydrogen atoms for sympathetic cooling of fluorine atoms to microkelvin temperatures. We carry out quantum-mechanical calculations on collisions between cold F and H atoms in magnetically trappable states and show that the ratio of elastic to inelastic cross sections remains high across a wide range of temperatures and magnetic fields. For F atoms initially in the spin-stretched state (2P3/2, f = mf = +2), sympathetic cooling appears likely to succeed from starting temperatures around 1 K or even higher. This occurs because inelastic collisions are suppressed by p-wave and d-wave barriers that are 600 mK and 3.2 K high, respectively. In combination with recent results on H + NH and H + OH collisions [M. L. González-Martínez and J. M. Hutson, Phys. Rev. Lett. 111, 203004 (2013)], this establishes ultracold H atoms as a very promising and versatile coolant for atoms and molecules that cannot be laser-cooled.
Citation
González-Martínez, M., & Hutson, J. M. (2013). Sympathetic cooling of fluorine atoms with ultracold atomic hydrogen. Physical Review A, 88(5), Article 053420. https://doi.org/10.1103/physreva.88.053420
Journal Article Type | Article |
---|---|
Publication Date | Nov 1, 2013 |
Deposit Date | Jan 13, 2014 |
Publicly Available Date | Jan 24, 2014 |
Journal | Physical Review A |
Print ISSN | 1050-2947 |
Electronic ISSN | 1094-1622 |
Publisher | American Physical Society |
Peer Reviewed | Peer Reviewed |
Volume | 88 |
Issue | 5 |
Article Number | 053420 |
DOI | https://doi.org/10.1103/physreva.88.053420 |
Files
Published Journal Article
(558 Kb)
PDF
Copyright Statement
© 2013 American Physical Society
You might also like
Formation of Ultracold Molecules by Merging Optical Tweezers
(2023)
Journal Article
Pinpointing Feshbach resonances and testing Efimov universalities in 39K
(2023)
Journal Article
Feshbach Spectroscopy of Cs Atom Pairs in Optical Tweezers
(2022)
Journal Article