J.N. Bull
Anion resonances and above-threshold dynamics of coenzyme Q0
Bull, J.N.; West, C.W.; Verlet, J.R.R.
Abstract
Temporary radical anions (resonances) of isolated co enzyme Q0 (CQ0) and their associated above-threshold dynamics have been studied using frequency-, angle-, and time-resolved photoelectron imaging (FAT-PI). Experimental energetics and dynamics are supported with ab initio calculations. All results support that CQ0 exhibits similar resonances and energetics compared with the smaller para-benzoquinone subunit, which is commonly considered as a prototype electrophore for larger biological para-quinone species. However, the above-threshold dynamics in CQ0 relative to para-benzoquinone show significantly enhanced prompt detachment compared with internal conversion, particularly around the photoexcitation energy of 3.10 eV. The change in dynamics can be attributed to a combination of an increase in the shape character of the optically-accessible resonance at this energy, a decrease in the autodetachment lifetime due to the higher density of states in the neutral, and a decrease in the probability that the wavepacket formed in the Franck–Condon window can access the local conical intersection in CQ0 over the timescale of autodetachment. Overall, this study serves as a clear example in understanding the trends in spectroscopy and dynamics in relating a simple prototypical para-quinone electrophore to a more complex biochemical species.
Citation
Bull, J., West, C., & Verlet, J. (2015). Anion resonances and above-threshold dynamics of coenzyme Q0. Physical Chemistry Chemical Physics, 17(24), 16125-16135. https://doi.org/10.1039/c5cp02145f
Journal Article Type | Article |
---|---|
Acceptance Date | May 19, 2015 |
Publication Date | Jun 28, 2015 |
Deposit Date | Jun 9, 2015 |
Publicly Available Date | May 19, 2016 |
Journal | Physical Chemistry Chemical Physics |
Print ISSN | 1463-9076 |
Electronic ISSN | 1463-9084 |
Publisher | Royal Society of Chemistry |
Peer Reviewed | Peer Reviewed |
Volume | 17 |
Issue | 24 |
Pages | 16125-16135 |
DOI | https://doi.org/10.1039/c5cp02145f |
Public URL | https://durham-repository.worktribe.com/output/1436452 |
Files
Accepted Journal Article
(5.1 Mb)
PDF
You might also like
Predicting the increase in electron affinity of phenoxy upon fluorination
(2024)
Journal Article
Downloadable Citations
About Durham Research Online (DRO)
Administrator e-mail: dro.admin@durham.ac.uk
This application uses the following open-source libraries:
SheetJS Community Edition
Apache License Version 2.0 (http://www.apache.org/licenses/)
PDF.js
Apache License Version 2.0 (http://www.apache.org/licenses/)
Font Awesome
SIL OFL 1.1 (http://scripts.sil.org/OFL)
MIT License (http://opensource.org/licenses/mit-license.html)
CC BY 3.0 ( http://creativecommons.org/licenses/by/3.0/)
Powered by Worktribe © 2025
Advanced Search