N.E. Sanders
Toward Characterization of the Type IIP Supernova Progenitor Population: A Statistical Sample of Light Curves from Pan-STARRS1
Sanders, N.E.; Soderberg, A.M.; Gezari, S.; Betancourt, M.; Chornock, R.; Berger, E.; Foley, R.J.; Challis, P.; Drout, M.; Kirshner, R.P.; Lunnan, R.; Marion, G.H.; Margutti, R.; McKinnon, R.; Milisavljevic, D.; Narayan, G.; Rest, A.; Kankare, E.; Mattila, S.; Smartt, S.J.; Huber, M.E.; Burgett, W.S.; Draper, P.W.; Hodapp, K.W.; Kaiser, N.; Kudritzki, R.P.; Magnier, E.A.; Metcalfe, N.; Morgan, J.S.; Price, P.A.; Tonry, J.L.; Wainscoat, R.J.; Waters, C.
Authors
A.M. Soderberg
S. Gezari
M. Betancourt
R. Chornock
E. Berger
R.J. Foley
P. Challis
M. Drout
R.P. Kirshner
R. Lunnan
G.H. Marion
R. Margutti
R. McKinnon
D. Milisavljevic
G. Narayan
A. Rest
E. Kankare
S. Mattila
S.J. Smartt
M.E. Huber
W.S. Burgett
Dr Peter Draper p.w.draper@durham.ac.uk
Senior Computer Programmer
K.W. Hodapp
N. Kaiser
R.P. Kudritzki
E.A. Magnier
Dr Nigel Metcalfe nigel.metcalfe@durham.ac.uk
Assistant Professor
J.S. Morgan
P.A. Price
J.L. Tonry
R.J. Wainscoat
C. Waters
Abstract
In recent years, wide-field sky surveys providing deep multiband imaging have presented a new path for indirectly characterizing the progenitor populations of core-collapse supernovae (SNe): systematic light-curve studies. We assemble a set of 76 grizy-band Type IIP SN light curves from Pan-STARRS1, obtained over a constant survey program of 4 yr and classified using both spectroscopy and machine-learning-based photometric techniques. We develop and apply a new Bayesian model for the full multiband evolution of each light curve in the sample. We find no evidence of a subpopulation of fast-declining explosions (historically referred to as "Type IIL" SNe). However, we identify a highly significant relation between the plateau phase decay rate and peak luminosity among our SNe IIP. These results argue in favor of a single parameter, likely determined by initial stellar mass, predominantly controlling the explosions of red supergiants. This relation could also be applied for SN cosmology, offering a standardizable candle good to an intrinsic scatter of lsim 0.2 mag. We compare each light curve to physical models from hydrodynamic simulations to estimate progenitor initial masses and other properties of the Pan-STARRS1 Type IIP SN sample. We show that correction of systematic discrepancies between modeled and observed SN IIP light-curve properties and an expanded grid of progenitor properties are needed to enable robust progenitor inferences from multiband light-curve samples of this kind. This work will serve as a pathfinder for photometric studies of core-collapse SNe to be conducted through future wide-field transient searches.
Citation
Sanders, N., Soderberg, A., Gezari, S., Betancourt, M., Chornock, R., Berger, E., …Waters, C. (2015). Toward Characterization of the Type IIP Supernova Progenitor Population: A Statistical Sample of Light Curves from Pan-STARRS1. Astrophysical Journal, 799(2), https://doi.org/10.1088/0004-637x/799/2/208
Journal Article Type | Article |
---|---|
Acceptance Date | Nov 29, 2014 |
Publication Date | Feb 1, 2015 |
Deposit Date | Jun 16, 2015 |
Publicly Available Date | Jul 1, 2015 |
Journal | Astrophysical Journal |
Print ISSN | 0004-637X |
Electronic ISSN | 1538-4357 |
Publisher | American Astronomical Society |
Peer Reviewed | Peer Reviewed |
Volume | 799 |
Issue | 2 |
DOI | https://doi.org/10.1088/0004-637x/799/2/208 |
Keywords | Supernovae: general, Surveys. |
Public URL | https://durham-repository.worktribe.com/output/1435844 |
Files
Published Journal Article
(3.1 Mb)
PDF
Copyright Statement
© 2015. The American Astronomical Society. All rights reserved.
You might also like
Pan-STARRS Pixel Analysis: Source Detection and Characterization
(2020)
Journal Article
The Pan-STARRS1 Database and Data Products
(2020)
Journal Article
The Pan-STARRS Data-processing System
(2020)
Journal Article
Pan-STARRS Photometric and Astrometric Calibration
(2020)
Journal Article
Pan-STARRS Pixel Processing: Detrending, Warping, Stacking
(2020)
Journal Article
Downloadable Citations
About Durham Research Online (DRO)
Administrator e-mail: dro.admin@durham.ac.uk
This application uses the following open-source libraries:
SheetJS Community Edition
Apache License Version 2.0 (http://www.apache.org/licenses/)
PDF.js
Apache License Version 2.0 (http://www.apache.org/licenses/)
Font Awesome
SIL OFL 1.1 (http://scripts.sil.org/OFL)
MIT License (http://opensource.org/licenses/mit-license.html)
CC BY 3.0 ( http://creativecommons.org/licenses/by/3.0/)
Powered by Worktribe © 2024
Advanced Search