C.G. Wade
Probing an Excited-State Atomic Transition Using Hyperfine Quantum Beat Spectroscopy
Wade, C.G.; Sibalic, N.; Keaveney, J.; Adams, C.S.; Weatherill, K.J.
Authors
Abstract
We describe a method to observe the dynamics of an excited-state transition in a room-temperature atomic vapor using hyperfine quantum beats. Our experiment using cesium atoms consists of a pulsed excitation of the D2 transition and continuous-wave driving of an excited-state transition from the 6P3/2 state to the 7S1/2 state. We observe quantum beats in the fluorescence from the 6P3/2 state which are modified by the driving of the excited-state transition. The Fourier spectrum of the beat signal yields evidence of Autler-Townes splitting of the 6P3/2, F=5 hyperfine level and Rabi oscillations on the excited-state transition. A detailed model provides qualitative agreement with the data, giving insight to the physical processes involved.
Citation
Wade, C., Sibalic, N., Keaveney, J., Adams, C., & Weatherill, K. (2014). Probing an Excited-State Atomic Transition Using Hyperfine Quantum Beat Spectroscopy. Physical Review A, 90, Article 033424. https://doi.org/10.1103/physreva.90.033424
Journal Article Type | Article |
---|---|
Publication Date | Sep 25, 2014 |
Deposit Date | Aug 19, 2014 |
Publicly Available Date | Sep 26, 2014 |
Journal | Physical Review A - Atomic, Molecular, and Optical Physics |
Print ISSN | 1050-2947 |
Electronic ISSN | 1094-1622 |
Publisher | American Physical Society |
Peer Reviewed | Peer Reviewed |
Volume | 90 |
Article Number | 033424 |
DOI | https://doi.org/10.1103/physreva.90.033424 |
Public URL | https://durham-repository.worktribe.com/output/1424816 |
Files
Published Journal Article
(1.1 Mb)
PDF
Publisher Licence URL
http://creativecommons.org/licenses/by/4.0/
Copyright Statement
Published by the American Physical Society under the terms of the Creative Commons Attribution 3.0 License. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI.
You might also like
Optical Transmission of an Atomic Vapor in the Mesoscopic Regime
(2019)
Journal Article
Downloadable Citations
About Durham Research Online (DRO)
Administrator e-mail: dro.admin@durham.ac.uk
This application uses the following open-source libraries:
SheetJS Community Edition
Apache License Version 2.0 (http://www.apache.org/licenses/)
PDF.js
Apache License Version 2.0 (http://www.apache.org/licenses/)
Font Awesome
SIL OFL 1.1 (http://scripts.sil.org/OFL)
MIT License (http://opensource.org/licenses/mit-license.html)
CC BY 3.0 ( http://creativecommons.org/licenses/by/3.0/)
Powered by Worktribe © 2025
Advanced Search