Skip to main content

Research Repository

Advanced Search

Geometric analysis aspects of infinite semiplanar graphs with nonnegative curvature

Hua, Bobo; Jost, Jürgen; Liu, Shiping

Geometric analysis aspects of infinite semiplanar graphs with nonnegative curvature Thumbnail


Authors

Bobo Hua

Jürgen Jost

Shiping Liu



Abstract

We apply Alexandrov geometry methods to study geometric analysis aspects of infinite semiplanar graphs with nonnegative combinatorial curvature. We obtain the metric classification of these graphs and construct the graphs embedded in the projective plane minus one point. Moreover, we show the volume doubling property and the Poincaré inequality on such graphs. The quadratic volume growth of these graphs implies the parabolicity. Finally, we prove the polynomial growth harmonic function theorem analogous to the case of Riemannian manifolds.

Citation

Hua, B., Jost, J., & Liu, S. (2013). Geometric analysis aspects of infinite semiplanar graphs with nonnegative curvature. Journal für die reine und angewandte Mathematik, 2015(700), 1-36. https://doi.org/10.1515/crelle-2013-0015

Journal Article Type Article
Acceptance Date Jan 21, 2013
Publication Date Apr 11, 2013
Deposit Date Dec 16, 2014
Publicly Available Date Sep 1, 2015
Journal Journal für die reine und angewandte Mathematik
Print ISSN 0075-4102
Electronic ISSN 1435-5345
Publisher De Gruyter
Peer Reviewed Peer Reviewed
Volume 2015
Issue 700
Pages 1-36
DOI https://doi.org/10.1515/crelle-2013-0015
Public URL https://durham-repository.worktribe.com/output/1418018

Files

Published Journal Article (474 Kb)
PDF

Copyright Statement
The final publication is available at www.degruyter.com





You might also like



Downloadable Citations