F. Benkhaldoun
A non-homogeneous Riemann solver for shallow water equations in porous media
Benkhaldoun, F.; Elmahi, I.; Moumna, A.; Seaid, M.
Abstract
The purpose of the current research is to develop an accurate and efficient solver for shallow water flows in porous media. The hydraulics is modeled by the two-dimensional shallow water flows with variable horizontal porosity. The variation of porosity in the water flows can be attributed to the variation of bed properties of the water system. As an example of porous shallow water flows is the passage of water discharge over vegetated areas in a river. Driving force of the phase separation and the mixing is the gradient of the porosity. For the numerical solution procedure, we propose a non-homogeneous Riemann solver in the finite volume framework. The proposed method consists of a predictor stage for the discretization of gradient terms and a corrector stage for the treatment of source terms. The gradient fluxes are discretized using a modified Roe’s scheme using the sign of the Jacobian matrix in the coupled system. A well-balanced discretization is used for the treatment of source terms. The efficiency of the solver is evaluated by several test problems for shallow water flows in porous media. The numerical results demonstrate high resolution of the proposed non-homogeneous Riemann solver and confirm its capability to provide accurate simulations for porous shallow water equations under flow regimes with strong shocks.
Citation
Benkhaldoun, F., Elmahi, I., Moumna, A., & Seaid, M. (2016). A non-homogeneous Riemann solver for shallow water equations in porous media. Applicable Analysis, 95(10), 2181-2202. https://doi.org/10.1080/00036811.2015.1067304
Journal Article Type | Article |
---|---|
Acceptance Date | Jun 25, 2015 |
Online Publication Date | Jul 24, 2015 |
Publication Date | Oct 1, 2016 |
Deposit Date | Nov 30, 2015 |
Publicly Available Date | Jul 24, 2016 |
Journal | Applicable Analysis |
Print ISSN | 0003-6811 |
Electronic ISSN | 1563-504X |
Publisher | Taylor and Francis Group |
Peer Reviewed | Peer Reviewed |
Volume | 95 |
Issue | 10 |
Pages | 2181-2202 |
DOI | https://doi.org/10.1080/00036811.2015.1067304 |
Keywords | Shallow water equations, Porous media, Finite volume method, Unstructured grids, Riemann solver, 76S99, 35L65, 65M08. |
Public URL | https://durham-repository.worktribe.com/output/1417640 |
Files
Accepted Journal Article
(6.8 Mb)
PDF
Copyright Statement
This is an Accepted Manuscript of an article published by Taylor & Francis Group in Applicable Analysis: An International Journal on 24/07/2015, available online at: http://www.tandfonline.com/10.1080/00036811.2015.1067304.
You might also like
A novel approach for modelling stress fields induced by shallow water flows on movable beds
(2025)
Journal Article
A fractional time-stepping method for unsteady thermal convection in non-Newtonian fluids
(2024)
Journal Article
High-order spline finite element method for solving time-dependent electromagnetic waves
(2024)
Journal Article
Downloadable Citations
About Durham Research Online (DRO)
Administrator e-mail: dro.admin@durham.ac.uk
This application uses the following open-source libraries:
SheetJS Community Edition
Apache License Version 2.0 (http://www.apache.org/licenses/)
PDF.js
Apache License Version 2.0 (http://www.apache.org/licenses/)
Font Awesome
SIL OFL 1.1 (http://scripts.sil.org/OFL)
MIT License (http://opensource.org/licenses/mit-license.html)
CC BY 3.0 ( http://creativecommons.org/licenses/by/3.0/)
Powered by Worktribe © 2025
Advanced Search