P.A. Golovach
Coloring graphs characterized by a forbidden subgraph
Golovach, P.A.; Paulusma, D.; Ries, B.
Abstract
The Coloring problem is to test whether a given graph can be colored with at most k colors for some given k, such that no two adjacent vertices receive the same color. The complexity of this problem on graphs that do not contain some graph H as an induced subgraph is known for each fixed graph H. A natural variant is to forbid a graph H only as a subgraph. We call such graphs strongly H-free and initiate a complexity classification of Coloring for strongly H-free graphs. We show that Coloring is NP-complete for strongly H-free graphs, even for k=3, when H contains a cycle, has maximum degree at least 5, or contains a connected component with two vertices of degree 4. We also give three conditions on a forest H of maximum degree at most 4 and with at most one vertex of degree 4 in each of its connected components, such that Coloring is NP-complete for strongly H-free graphs even for k=3. Finally, we classify the computational complexity of Coloring on strongly H-free graphs for all fixed graphs H up to seven vertices. In particular, we show that Coloring is polynomial-time solvable when H is a forest that has at most seven vertices and maximum degree at most 4.
Citation
Golovach, P., Paulusma, D., & Ries, B. (2015). Coloring graphs characterized by a forbidden subgraph. Discrete Applied Mathematics, 180, 101-110. https://doi.org/10.1016/j.dam.2014.08.008
Journal Article Type | Article |
---|---|
Publication Date | Jan 1, 2015 |
Deposit Date | Dec 20, 2014 |
Publicly Available Date | Jan 6, 2015 |
Journal | Discrete Applied Mathematics |
Print ISSN | 0166-218X |
Electronic ISSN | 1872-6771 |
Publisher | Elsevier |
Peer Reviewed | Peer Reviewed |
Volume | 180 |
Pages | 101-110 |
DOI | https://doi.org/10.1016/j.dam.2014.08.008 |
Keywords | Complexity, Algorithms, Graph coloring, Forbidden subgraphs. |
Public URL | https://durham-repository.worktribe.com/output/1415033 |
Files
Accepted Journal Article
(385 Kb)
PDF
Copyright Statement
NOTICE: this is the author’s version of a work that was accepted for publication in Discrete applied mathematics. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in Discrete applied mathematics, 180, 2015, 10.1016/j.dam.2014.08.008
You might also like
Computing balanced solutions for large international kidney exchange schemes
(2024)
Journal Article
An Algorithmic Framework for Locally Constrained Homomorphisms
(2024)
Journal Article
Solving problems on generalized convex graphs via mim-width
(2023)
Journal Article
The Complexity of Matching Games: A Survey
(2023)
Journal Article
Induced Disjoint Paths and Connected Subgraphs for H-Free Graphs
(2023)
Journal Article
Downloadable Citations
About Durham Research Online (DRO)
Administrator e-mail: dro.admin@durham.ac.uk
This application uses the following open-source libraries:
SheetJS Community Edition
Apache License Version 2.0 (http://www.apache.org/licenses/)
PDF.js
Apache License Version 2.0 (http://www.apache.org/licenses/)
Font Awesome
SIL OFL 1.1 (http://scripts.sil.org/OFL)
MIT License (http://opensource.org/licenses/mit-license.html)
CC BY 3.0 ( http://creativecommons.org/licenses/by/3.0/)
Powered by Worktribe © 2024
Advanced Search