A.S. Chatterley
On the intrinsic photophysics of indigo: a time-resolved photoelectron spectroscopy study of the indigo carmine dianion
Chatterley, A.S.; Horke, D.A.; Verlet, J.R.R.
Abstract
The intrinsic photophysics of indigo has been studied using gas-phase time-resolved photoelectron imaging of the indigo carmine dianion (InC2−). The action spectrum reveals that the gas-phase absorption spectrum arising from the S1 ← S0 transition in InC2− has a similar solvent shift to that of neutral indigo. Femtosecond spectroscopy shows that the S1 state decays on a 1.4 ps timescale. Through isotopic substitution, the primary mechanism on the S1 excited state can be assigned to an intra-molecular proton transfer, which is the same as that which has been observed in solution. However, the excited state lifetime is significantly shorter in vacuum. These similarities and differences are discussed in terms of recent theoretical investigations of the S1 excited state of indigo.
Citation
Chatterley, A., Horke, D., & Verlet, J. (2012). On the intrinsic photophysics of indigo: a time-resolved photoelectron spectroscopy study of the indigo carmine dianion. Physical Chemistry Chemical Physics, 14(46), 16155-16161. https://doi.org/10.1039/c2cp43275g
Journal Article Type | Article |
---|---|
Acceptance Date | Oct 15, 2012 |
Publication Date | Nov 7, 2012 |
Deposit Date | Jan 28, 2016 |
Publicly Available Date | Feb 5, 2016 |
Journal | Physical Chemistry Chemical Physics |
Print ISSN | 1463-9076 |
Electronic ISSN | 1463-9084 |
Publisher | Royal Society of Chemistry |
Peer Reviewed | Peer Reviewed |
Volume | 14 |
Issue | 46 |
Pages | 16155-16161 |
DOI | https://doi.org/10.1039/c2cp43275g |
Public URL | https://durham-repository.worktribe.com/output/1414131 |
Files
Accepted Journal Article
(389 Kb)
PDF
You might also like
Predicting the increase in electron affinity of phenoxy upon fluorination
(2024)
Journal Article
Downloadable Citations
About Durham Research Online (DRO)
Administrator e-mail: dro.admin@durham.ac.uk
This application uses the following open-source libraries:
SheetJS Community Edition
Apache License Version 2.0 (http://www.apache.org/licenses/)
PDF.js
Apache License Version 2.0 (http://www.apache.org/licenses/)
Font Awesome
SIL OFL 1.1 (http://scripts.sil.org/OFL)
MIT License (http://opensource.org/licenses/mit-license.html)
CC BY 3.0 ( http://creativecommons.org/licenses/by/3.0/)
Powered by Worktribe © 2025
Advanced Search