W. Zhang
Single-Molecule Conductance of Viologen–Cucurbit[8]uril Host–Guest Complexes
Zhang, W.; Gan, S.; Vezzoli, A.; Davidson, R.J.; Milan, D.C.; Luzyanin, K.V.; Higgins, S.J.; Nichols, R.J.; Beeby, A.; Low, P.J.; Li, B.; Niu, L.
Authors
S. Gan
A. Vezzoli
Dr Ross Davidson ross.davidson@durham.ac.uk
Academic Visitor
D.C. Milan
K.V. Luzyanin
S.J. Higgins
R.J. Nichols
Professor Andrew Beeby andrew.beeby@durham.ac.uk
Professor
P.J. Low
B. Li
L. Niu
Abstract
The local molecular environment is a critical factor which should be taken into account when measuring single-molecule electrical properties in condensed media or in the design of future molecular electronic or single molecule sensing devices. Supramolecular interactions can be used to control the local environment in molecular assemblies and have been used to create microenvironments, for instance, for chemical reactions. Here, we use supramolecular interactions to create microenvironments which influence the electrical conductance of single molecule wires. Cucurbit[8]uril (CB[8]) with a large hydrophobic cavity was used to host the viologen (bipyridinium) molecular wires forming a 1:1 supramolecular complex. Significant increases in the viologen wire single molecule conductances are observed when it is threaded into CB[8] due to large changes of the molecular microenvironment. The results were interpreted within the framework of a Marcus-type model for electron transfer as arising from a reduction in outer-sphere reorganization energy when the viologen is confined within the hydrophobic CB[8] cavity.
Citation
Zhang, W., Gan, S., Vezzoli, A., Davidson, R., Milan, D., Luzyanin, K., …Niu, L. (2016). Single-Molecule Conductance of Viologen–Cucurbit[8]uril Host–Guest Complexes. ACS Nano, 10(5), 5212-5220. https://doi.org/10.1021/acsnano.6b00786
Journal Article Type | Article |
---|---|
Acceptance Date | Apr 7, 2016 |
Online Publication Date | Apr 19, 2016 |
Publication Date | May 24, 2016 |
Deposit Date | Apr 21, 2016 |
Publicly Available Date | Apr 7, 2017 |
Journal | ACS Nano |
Print ISSN | 1936-0851 |
Electronic ISSN | 1936-086X |
Publisher | American Chemical Society |
Peer Reviewed | Peer Reviewed |
Volume | 10 |
Issue | 5 |
Pages | 5212-5220 |
DOI | https://doi.org/10.1021/acsnano.6b00786 |
Public URL | https://durham-repository.worktribe.com/output/1414006 |
Files
Published Journal Article (Final published version)
(3.2 Mb)
PDF
Publisher Licence URL
http://creativecommons.org/licenses/by/4.0/
Copyright Statement
Final published version
Published Journal Article (Advance online version)
(3.2 Mb)
PDF
Publisher Licence URL
http://creativecommons.org/licenses/by/4.0/
Copyright Statement
Advance online version
Accepted Journal Article
(792 Kb)
PDF
Copyright Statement
This is an open access article published under a Creative Commons Attribution (CC-BY) License, which permits unrestricted use, distribution and reproduction in any medium, provided the author and source are cited.
You might also like
Tuning Emission Lifetimes of Ir(C^N)2(acac) Complexes with Oligo(phenyleneethynylene) Groups
(2023)
Journal Article
Thermoelectric Enhancement in Single Organic Radical Molecules
(2022)
Journal Article
Highly Linearized Twisted Iridium(III) Complexes
(2018)
Journal Article
Downloadable Citations
About Durham Research Online (DRO)
Administrator e-mail: dro.admin@durham.ac.uk
This application uses the following open-source libraries:
SheetJS Community Edition
Apache License Version 2.0 (http://www.apache.org/licenses/)
PDF.js
Apache License Version 2.0 (http://www.apache.org/licenses/)
Font Awesome
SIL OFL 1.1 (http://scripts.sil.org/OFL)
MIT License (http://opensource.org/licenses/mit-license.html)
CC BY 3.0 ( http://creativecommons.org/licenses/by/3.0/)
Powered by Worktribe © 2024
Advanced Search