J. Lim
Modeling sympathetic cooling of molecules by ultracold atoms
Lim, J.; Frye, M. D.; Hutson, J. M.; Tarbutt, M. R.
Abstract
We model sympathetic cooling of ground-state CaF molecules by ultracold Li and Rb atoms. The molecules are moving in a microwave trap, while the atoms are trapped magnetically. We calculate the differential elastic cross sections for CaF-Li and CaF-Rb collisions, using model Lennard-Jones potentials adjusted to give typical values for the s-wave scattering length. Together with trajectory calculations, these differential cross sections are used to simulate the cooling of the molecules, the heating of the atoms, and the loss of atoms from the trap. We show that a hard-sphere collision model based on an energy-dependent momentum transport cross section accurately predicts the molecule cooling rate but underestimates the rates of atom heating and loss. Our simulations suggest that Rb is a more effective coolant than Li for ground-state molecules, and that the cooling dynamics is less sensitive to the exact value of the s-wave scattering length when Rb is used. Using realistic experimental parameters, we find that molecules can be sympathetically cooled to 100μK in about 10 s. By applying evaporative cooling to the atoms, the cooling rate can be increased and the final temperature of the molecules can be reduced to 1 μK within 30 s.
Citation
Lim, J., Frye, M. D., Hutson, J. M., & Tarbutt, M. R. (2015). Modeling sympathetic cooling of molecules by ultracold atoms. Physical Review A, 92(5), Article 053419. https://doi.org/10.1103/physreva.92.053419
Journal Article Type | Article |
---|---|
Acceptance Date | Sep 18, 2015 |
Publication Date | Nov 1, 2015 |
Deposit Date | Feb 4, 2016 |
Publicly Available Date | Feb 19, 2016 |
Journal | Physical Review A - Atomic, Molecular, and Optical Physics |
Print ISSN | 1050-2947 |
Electronic ISSN | 1094-1622 |
Publisher | American Physical Society |
Peer Reviewed | Peer Reviewed |
Volume | 92 |
Issue | 5 |
Article Number | 053419 |
DOI | https://doi.org/10.1103/physreva.92.053419 |
Public URL | https://durham-repository.worktribe.com/output/1413031 |
Files
Published Journal Article
(1.9 Mb)
PDF
Publisher Licence URL
http://creativecommons.org/licenses/by/4.0/
Copyright Statement
This article is available under the terms of the Creative Commons Attribution 3.0 License. Further distribution of this work must maintain attribution to the author(s) and the published article’s title, journal citation, and DOI.
You might also like
Roger E. Miller (obituary)
(2006)
Other
An Introduction to the Dynamics of Van der Waals Molecules
(1991)
Journal Article
Pinpointing Feshbach resonances and testing Efimov universalities in 39K
(2023)
Journal Article
Formation of Ultracold Molecules by Merging Optical Tweezers
(2023)
Journal Article
Interaction potential for NaCs for ultracold scattering and spectroscopy
(2022)
Journal Article
Downloadable Citations
About Durham Research Online (DRO)
Administrator e-mail: dro.admin@durham.ac.uk
This application uses the following open-source libraries:
SheetJS Community Edition
Apache License Version 2.0 (http://www.apache.org/licenses/)
PDF.js
Apache License Version 2.0 (http://www.apache.org/licenses/)
Font Awesome
SIL OFL 1.1 (http://scripts.sil.org/OFL)
MIT License (http://opensource.org/licenses/mit-license.html)
CC BY 3.0 ( http://creativecommons.org/licenses/by/3.0/)
Powered by Worktribe © 2024
Advanced Search